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ABSTRACT

Image classification often require preprocessing and feature
extraction steps that are directly related to the accuracy and
speed of the whole task. In this paper we investigate color fea-
tures extracted from low resolution images, assessing the in-
fluence of the resolution settings on the final classification ac-
curacy. We propose a border-interior classification extractor
with a logarithmic distance function in order to maintain the
discrimination capability in different resolutions. Our study
shows that the overall computational effort can be reduced in
98%. Besides, a fast bitwise quantization is performed for its
efficiency on converting RGB images to one channel images.
The contributions can benefit many applications, when deal-
ing with a large number of images or in scenarios with limited
network bandwidth and concerns with power consumption.

Index Terms— Feature extraction, image classification.

1. INTRODUCTION

Image classification and retrieval tasks can be computation-
ally demanding on applications with large image databases or
images of high resolution. Since the image acquisition with
high spatial sampling is currently a standard, it is important to
analyze alternatives to process and classify such large images.

Swain and Ballard showed that it was possible to use
different resolutions of images for color descriptor [1]. Later,
with new applications including more classes and instances,
other authors recommended the highest spatial resolution
available for histogram-based descriptors [2], and also for
face detection applications [3], performing downsampling
only if the original resolution is too high to process. On the
other hand Brunelli and Mich [4] claimed that reducing the
resolution or quality of the images does not degrade severely
the retrieval performance of histogram-based systems. Never-
theless, there are no studies that tries to answer this questing
by analyzing the problem in a objective way.

In this paper we evaluate the classification results when
using lower resolution versions of images, in order to under-
stand how much it is possible to reduce the image size without
hampering the accuracy. Color description is used because it
retains shape, location, and texture information, especially for

images without distinctive objects and scenes [5]. A fast color
quantization method is also propose.

An example of an application that can benefit for our
work is the Produce dataset. It was acquired using RGB color
images with 1024 × 786 pixels [6]. In the original work,
the authors achieved good classification performance using a
pipeline of operations: i) downsampling by half of the origi-
nal size using linear interpolation, ii) background subtraction
based on k-Means algorithm, iii) extraction of five different
feature vectors and iv) feature/classifier fusion. We believe
the whole system, as well as other applications, can benefit
from the use of faster algorithms and lower resolution images.

Contributions Recent studies showed that the choice of the
method used to convert color images to grayscale have signif-
icant impact on image recognition [7, 8], and that simplifi-
cation of images often has good impact in image segmenta-
tion [9]. Our contribution is to propose both a reduction in
resolution, by undersampling the image, and a quantization
while mantaining the discrimination capability of the color
descriptors. This could reduce the cost of feature extraction
on content based image retrieval and classification tasks. As
far as we know there is no previous study using the same
methodology to ask such questions.

2. COLOR DESCRIPTORS

• BIC (Border-interior classification): uses a re-quantized
image (often with 64 colors) and generates a represen-
tation of the image color distribution by computing two
histograms: one for the pixels classified as border and
another one for those classified as interior. A pixel is
classified as border if at least one of its neighbors has
a different quantized color, and classified as interior
otherwise [10].

• GCH (Global Color Histogram): its feature vector is
composed by ordered values, one for each distinct
color, representing the probability of a given pixel have
that specific color, computed as a normalized histogram
of color frequencies on the whole image. A reduced
number of color is often used [1].
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Fig. 1. Samples of the 15 classes of Produce dataset

Fig. 2. Samples of the 10 classes of COREL dataset

• LCH (Local Color Histogram): similar to the GCH, but
it divides the image in fixed rectangular regions, com-
puting the normalized histogram of each region [11].

3. BASE CLASSIFIERS

SVM (Support Vector Machines): a classifier developed using
the statistical learning theory [12]. It maps the vector space
to a higher dimensional space, uses kernel functions to com-
pute the data distribution, and uses optimization techniques to
find the support vectors. It is complex, but works well for dif-
ferent tasks, by tuning parameters such as the kernel function.

OPF (Optimum-Path Forest): in this classifier the samples are
interpreted as vertices of a graph. The training step connects
the samples from the same class in order to produce trees,
using a specified distance space adjacency relation. The set
of trees is the optimum path forest (OPF). A new sample is
classified by connecting it to the tree that offers the optimum
cost path to its root. This classifier was proposed in 2009 [13]
and showed good performance on different applications. It
handles multi-class problems natively and has no parameters
to adjust. In this paper we used an ensemble version of OPF
for a better performance [14].

4. METHOD AND EXPERIMENTS

4.1. Image databases

Produce (also refered as Tropical Fruits and Vegetables
dataset): contains RGB images with a controlled background

but changes in illumination, pose, number of objects and
scale as can be seen in Figure 1. Some images also present
partial occlusion of the objects, blur and shadow [6] with:

• 2633 images with 1024× 768 pixels resolution.

• 15 unbalanced classes: Agata Potato, Asterix Potato,
Pear, Cashew, Peach, Red Apple, Green Apple, Melon,
Kiwi, Nectarine, Onion, Orange, Plum, Lime and Wa-
termelon. From 75 to 264 objects per class.

COREL-1000: RGB images (samples shown in Figure 2)
compiled by Wang et al. [5] with:

• 1000 images with 384× 256 pixels resolution.

• 10 classes: Africa, Beach, Building, Bus, Dinosaur,
Flower, Elephant, Horse, Mountain and Food, with 100
objects per class.

4.2. Logarithmic distance

When computing the difference between two colors frequen-
cies with very different values, the result given by the eu-
clidean distance is a large number that is summed over smaller
differences. Thus, images with the same background color
but different foreground can be assigned to the same class.
The logarithmic distance (dLog) between two histograms q
and d, tries to reduce this problem[10]:

dLog(q, d) =

i=M∑
i=0

‖ f(q[i])− f(d[i]) ‖, (1)

where

f(x) =

 0, if x = 0
1, if 0 < x < 1
dlog2 xe+ 1, otherwise

.

In order to use this function, the feature vectors are normal-
ized to values between 0 and 255.

4.3. Fast downsampling and quantization

In order to study the impact of different image resolutions on
the performance of the classification, the images were down-
sampled to 354× 256 as a starting point and used in versions
called 100% (354× 256), 75% (266× 192), 50% (177× 128)
and 25% (89× 64) of the starting size. An example of such
reduction is shown in Figure 3. The original studies used im-
ages with 354 × 256 for COREL [5] and a downsampling to
640× 480 for Produce [6].

The OpenCV library [15] and C were used to perform
the image resizing, quantization, feature extraction and dLog.
Fast preprocessing algorithms were implemented as follows:

• The images were downsampled without antialiasing,
since it was the fastest option available.
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(a) (b) (c)

Fig. 3. Nectarine image low resolution samples: a) 100% b)
50% c) 25%

• A fast re-quantization method was developed to ob-
tain 64 color images using the two most significant bits
of each color channel. Each 24-bit pixel, 8 bits/channel
in the format: (B1B2B3B4B5B6B7B8),
(G1G2G3G4G5G6G7G8), (R1R2R3R4R5R6R7R8),
was changed into a single 6-bit channel, i.e.:
[0 0 B1B2G1G2R1R2]. This procedure is linear on
the number of pixels, and fast to compute since it uses
only bitwise operations.

4.4. Experimental settings

• BIC: in order to simplify the border/interior classifica-
tion, a neighborhood of 4 pixels was used. All pixels
on the outer edge of the image were considered border
pixels. The final histogram was calculated by the con-
catenation of the border and interior histograms.

• LCH: the image was divided into four rows and four
columns, a setting often used in the literature [16].

• GCH and LCH: feature vector values were normalized
to double precision numbers in a [0-1] interval so that
the sum of the elements equals unity.

Four different hold-out configurations were used. From
the available samples, 4 experiments were carried out using
different number of object per class as training set:

• Produce: 64, 48, 32 and 16 samples per class, similar
to the experiments performed in [6].

• COREL: 40, 30, 20 and 10 samples per class.

Each experiment was repeated 10 times using a repeated
sampling method in order to compute average and standard
deviation values. A balanced accuracy was used since the
Produce dataset has unbalanced classes.

The classifiers were trained using the L2-norm distance
and also the logarithmic distance as described in Eq.1. The
SVM parameters were adjusted by grid search with an evalu-
ation set (10% of the training set) for each descriptor/settings.
The best parameters are shown in Table 1. The libSVM de-
fault values were used on all other parameters and the distance
function used was also the default.

Table 1. Parameters for the SVM classifier
Kernel Cost γ

GCH Radial base 200 1/5
LCH Sigmoidal 300 1/20
BIC Polinomial 300 1/120

Table 2. Results for COREL-1000 with 40 samples per class

OPF Ensemble
Size LCH GCH BIC BIC-dLog

100% 92.4%±0.7 93.9%±0.8 98.2%±0.4 98.9%±0.2
75% 92.8%±0.8 94.2%±0.7 98.5%±0.3 99.2%±0.3
50% 93.2%±0.9 94.0%±1.2 98.7%±0.3 98.9%±0.6
25% 92.2%±1.1 94.1%±1.8 98.6%±0.3 99.1%±0.7

SVM
Size LCH GCH BIC BIC-dLog

100% 90.0%±0.9 95.1%±0.3 97.3%±0.6 97.6%±0.6
75% 91.8%±1.7 94.3%±0.7 97.5%±1.5 98.5%±1.0
50% 91.5%±2.1 94.6%±1.2 97.0%±0.9 98.8%±2.1
25% 90.3%±2.4 94.3%±0.9 97.2%±1.1 98.3%±1.3

5. RESULTS AND DISCUSSION

The results are shown in Table 2 for COREL with 40 sam-
ples/class and Table 3 for the Produce dataset with 64 sam-
ples/class. The OPF classifier showed accuracies similar to
the SVM classifier most experiments. For this reason, from
this point, only OPF classifier results will be shown.

In order to see the effect of using different training sam-
ples per class, results with GCH and BIC are shown in Figure
4 for COREL dataset. The BIC-dLog method showed more
robust results with respect to the number of training samples.
The logarithmic distance used with GCH degraded the results.
The LCH results were not displayed since the results were
similar to the GCH method.

Table 3. Results for Produce with 64 samples per class

OPF
Size LCH GCH BIC BIC-dLog

100% 91.5%±0.4 91.1%±0.3 97.1%±0.9 98.1%±0.7
75% 90.9%±0.5 91.8%±0.6 96.2%±0.8 97.9%±0.5
50% 90.6%±1.3 91.3%±1.0 96.9%±0.8 98.6%±0.9
25% 89.8%±1.2 91.8%±1.2 96.0%±1.4 98.2%±1.0

SVM
Size LCH GCH BIC BIC-dLog

100% 85.0%±1.2 85.1%±1.3 95.3%±1.0 97.9%±0.5
75% 83.8%±1.7 84.3%±0.6 95.2%±0.5 97.5%±2.3
50% 83.5%±2.3 84.6%±1.4 95.0%±0.9 97.8%±0.9
25% 82.5%±1.5 84.3%±1.8 95.2%±1.2 97.7%±1.4
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Fig. 4. COREL results of GCH descriptor (first row) and BIC
descriptor (second row) with different training samples

In order to show better the effect of using lower resolution
images on the classification accuracy, two graphs with the re-
sults for the both COREL and Produce dataset are shown in
Figure 5, where is possible to see that the decrease on the res-
olution can increase the standard deviation, but with a stable
classification accuracy, even for the 25% setting. In contrast
to the previous recommendations for using the highest spatial
resolution available [2], our findings shows that it is possible
to significantly reduce the spatial resolution, speeding-up the
process without hampering the classification performance.

Fig. 5. Results changing resolutions for COREL (left) and
Produce (right)

The produce classification task, in the previous study, re-
quired background removal and extraction of color and tex-
ture features. It was possible to show that an image with
89 × 64 = 5, 696 pixels is sufficient to obtain an efficient
color descriptor. When compared to the images previously
used, that used images with 640×480 = 307, 200 pixels, this
represents a reduction of ≈ 98% on the computational effort.
Figure 6 shows two trees for the visualization of Produce im-
age collection instances [17], showing that instances will lie
in similar branches after resolution reduction.

Fig. 6. Visualization of Produce image collection using simi-
larity trees: left 100% resolution, right, 50% resolution. Each
node is a feature vector and each color represents a class as-
signed by the classifier. Selected samples from one class are
highlighted, showing that after processing a similar distribu-
tion of nodes is observed.

6. CONCLUSION

Experiments were performed to investigate the accuracy us-
ing low resolution images and bitwise quantization. These
procedures can speed-up the preprocessing and feature ex-
traction steps. With respect to the resolutions, we observed
similar results with different classifiers and feature extractors.

According to the experimental evidences, the BIC de-
scriptor and the use of a logarithmic function are specially
suited to the use of color descriptors with low resolution im-
ages. The bitwise quantization method also worked well for
description. Besides, the OPF classifier showed performance
compared to the SVM without the need of grid search. The
advantages of this set of methods are: i) OPF does not pa-
rameter search, ii) BIC discriminative properties are better
preserved in different resolutions and training set sizes, iii)
bitwise algorithms are faster to compute, iv) the logarithmic
distance with BIC prevent confusion when spatial resolution
is lost and less training samples are used.

The results indicate that it is possible to use color descrip-
tors extracted from low resolution images. Also, for classifi-
cation purposes, there is no need for interpolation or a quan-
tization method that preserves visual quality. Our study gives
an important guideline for using color descriptors with maxi-
mum efficiency, benefiting many applications, specially those
with a large number of images to be processed. Such guide-
lines are, for example, useful for applications with limited
network bandwidth and concerns with power consumption.
Future studies can investigate also texture and shape descrip-
tors in this context.
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