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ABSTRACT multiple channels are called Aggregate Channel Features

In this paper, we propose a kind of image representation(fa‘cg) [1h’ 15].h hand . | ing based f h
named PCA filters based convolutional channel features n the ot e_r a’? » various learning based features have
(PCA-CCF) for pedestrian detection. The motivation is toattracted attentions in recent years. P. Sermanet et a{. pro
use the convolutional network architecture with orthogona_posed to Ilea;_r n mlultl-stalgeffatulr(escfﬁ:\lpetigstr;zan dette:m—
PCA filters to enhance the state-of-the-art aggregate hann"9 cONVo'Utionai neural network ( )| - ] Ren etal. pro-
features (ACF). In PCA-CCF, the convolutional operationpos_ed to_lncorporate unsuperwse(_j learning to extracsspar
improves the feature robustness to pedestrian local daiformCOdIng histogram features [17]. Lim et al. proposed to use

tion. The learned PCA filters reduce the correlations among.nsupervised Iearning. to extract mid-level feat.ures thei p
features of each channel, and therefore, improve featsre di isely capture pedestrian contours [18]. Learning basad fe

crimination capability. With the proposed PCA-CCF feature tures leverage unsupervised or back-propagation algasith

and cascaded AdaBoost classifiers, we develop a coarse-ﬁ?—Spec'fy object represer!t_atlons, af‘d demo_nstrate excell
{obustness and adaptability. Despite superior perfoocman

fine pedestrian detection approach. Experiments show tht}ah | d feat tasd i handezaft
such approach achieves 3%417.87% and 6.28; perfor- ese learned features are not as descriptive as handeaa
res, and are often computationally expensive. Some back-

mance gain on the INRIA, Caltech Reasonable and Caltec%J . . ) .
Overall pedestrian datasets, respectively. propagation based feature learning algorithms, i.e., GhNN,

ten require a large number of training samples to guarantee
Index Terms— Pedestrian detection, Channel features, Pperformance.

CA, Convolutional network In this paper, we propose the PCA filters based convolu-
tional channel features (PCA-CCF) for pedestrian detactio
1. INTRODUCTION Such work is rooted in the success of integration of multiple

channel features, and is also inspired by the success of-a sim

Pedestrian detection in natural scene images contriboites t ple deep learning method, PCANet [19], which extracts effec
variety of applications, including robotics, intelligetnans- tive features using PCA filters and convolutional operation
portation and video surveillance systems. Although exten©ur contribution is applying PCA filters to reduce the corre-
sively investigated, the low performance on public benchiations among feature channels, and use convolutional oper
marks indicates that image based pedestrian detection rations to improve robustness of features. Without using the
mains an open problem [1-3].. back-propagation, PCA-CCF is not sensitive to the number

Feature representation has been considered one of thétraining samples. We also propose using channel pooling
most critical factors in the pedestrian detection problang  to compensate conventional spatial pooling. By theseestrat
exploring image features that can effectively and effidjent gies, PCA-CCF incorporates both the discriminative prgper
discriminate pedestrians from the clutter backgrounds hasf learned features and the descriptive capability of henadt
been the focus of the community. Hand-craft image feafeatures.
tures developed for pedestrian detection include Haar-lik In pedestrian detection, the conventional ACF is firstly
features [4], Histogram of Oriented Gradients (HOG) [5],used to train a coarse detector, which is used to generate a se
v-HOG [6],covariance features [7], Local Binary Patternof candidate windows. The candidate windows have a high
(LBP) [8], HOG-LBP [9], HOG-SURF [10], Edgelet [11], recall rate on pedestrians, but include lots of false dietect
Shapelet [12], Multi-Scale Orientation (MSO) [13], and s. PCA-CCF is then extracted on these windows and fed to a
pose-invariant descriptors [14]. A recent research demorsascaded AdaBoost classifier to perform fine classification.
strates superior detection performance and efficiency when The remainder of this paper is organized as follows. In
using integral features from multiple channels of colog-gr section 2, the PCA filters based convolutional channel fea-
dient and orientation [15]. The features extracted fromtures extraction is described. In section 3, the pedestigan
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tection framework is elaborated. In section 4, experimentaa set of orthogonal vectors. Applying PCA for each feature
results are presented, and in section 5 we conclude the papdrannel, we get

with discussion of future directions.

2. FEATURE EXTRACTION

To make the paper self-contained, the aggregate channel f

min || X — VYT X"

3)
stVVT =1 k=1,2,--- K

wherel;, is an identity matrix of sizd. x L. The solution

8% of Eq.(3) is a matrix combining principle eigenvectors.

tures (ACF) are first reviewed, and the procedures of le@minTpg ejgenvectors are reshaped to 2-dimensional PCA filters

PCA filters and extraction of convolutional channel feasure
are then described.

2.1. Aggregate Channel Features
Given a sample imagk ACF computes channels using linear
or non-linear transformation dfas

f=a), @)

of m x m pixels, which are expressed as

wheremat(-) is a function that reshapes a vector to a matrix.
We experimentally set the size of PCA filters as< 5
pixels (m x m = 5 x 5). Ten groups of learned PCA filters
are shown in Fig. 2. According to PCA theory, top PCA
filters contain the most information of the samples (channel

P =mat(V;) e R 1=1,2,-

whereQ is a first-order function as a sum of pixels in a rect-features). It can be seen that the orientations of the firgt PC
angular image region or higher-order functions that are-confilters in the HOG channels;-G¢ channels) are consistent
puted using multiple first-order in a single channel. Down-With the quantized orientations 6f,-G¢ channels.

sampling by2 x 2 is used to reduce the size of channel maps.

As shown in Fig.1, ACF has ten channels: three color chan-

nels (L, U and V channels), a gradient magnitude char@él (
channel), histogram of oriented gradients chann@lsGe
channels). The ACF code is available onfine

by o
\ /- — ~ N\
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Fig. 1. Aggregate Channel Features of a pedestrian sample'.:
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ig. 2. Visualization of top PCA filters of ten channels. Each
group (column) shows top eight eigenvectors.

G+ Gs Gs

Because the first-order feature can be computed efficiently

using integral images, extracting ACF takes about 802s
per640 x 480 image, depending on the selected.

2.2. Learning PCA filters

Compared with PCANet filters derived from raw image
patches, PCA-CCF learns a filter group for every AC
channel map. GiverV training pedestrian sample images
I={L},i=1,2,---,N of sizew x h, their ACF is de-
noted as{f;x},i = 1,2,---,N,k = 1,2,--- K. For

the kth channel of a pedestrian sample image, we take

am x m patchz; , around each pixel to obtain patches
Xik = [T10, T2, Twnk] € R™™*Wh Collecting all
patches of théth channel off, we get

Xi = [ X1, Xojg, - X € R Nwh, 2

PCA uses an orthogonal transformation to convert a set

of possibly correlated variables into a set of values ofdine
ly uncorrelated. It minimizes the reconstruction errorhivit

http://vision.ucsd.edu/ pdollar/toolbox/doc/

1395

2.3. Convolutional Channel Features

With learned PCA filters, the ACFf; 1. },i = 1,2,..., N, k =
1,2, ..., K are convoluted to calculate the PCA-CCF. This
procedure has three steps: convolution with E0PCA filter-

s, spatial local pooling and channel pooling, as shown in Fig

g3- We take spatial local pooling and channel pooling instead

of hashing and histogram as in PCANet.

ACF extraction First layers

max-min operation

,Cbnvolution ,IP/ooling ~ i

Fig. 3. PCA-CCF extraction.

Convolution: Each ACF channel convolves with PCA
filters, and output4. convolutional layer maps, as

CONVij, = Pofi,l=1,2,...L, k=1,2,...K (5)



whereP, ;, is thelth PCA filter of thekth channel,f; is the Training [Samples] " 3-stage ACF| mine | Hard |Rewin] PCA-CCF
kth channel feature map. After convolution, the number of Clamﬂer samples C'asslﬁcf
Classify

ACF feature maps (channels) increases te K.
Pedestrian/
boxes Non-pedestrian

Spatial Local Pooling: Similar to the CNN, a pooling op-
Fig. 4. Pedestrian detection framework.

Classify

eration is applied to reduce the feature dimensionalitwelb Testing

as to achieve robustness to local variations. On the convolu
tional layer maps, the max and min pooling operations [20]ar

performed to calculate spatially pooled feature maps, as  efficiency [1]. It also has a high recall rate on pedestriaos,
. include lots of false detections.
{ ?i%‘?ﬁj : E ; :E?;({{g g ]]\7“/?:(%?‘((;’3.]))))}} , (6) PCA-CCF is then extracted from these candidate windows
’ ’ ’ and fed to another cascaded AdaBoost classifier to perform
whereR(i, j) is a region surrounding pixét, j) in the Ith final detection. The weak classifiers used for the AdaBoost
convolutional layer of the:th channel. As ACF conduct- classifier are decision trees. The reason why we choose de-
s 2 x 2 down-sampling, the dimensionality of all spatially Cision trees is that channel features are linearly de-tziee
pooled mapsFS = {FS_MAX,FS_MIN} after spatial by the PCA filters, and therefore, could be coupled to the de-
local pooling is2 x L x K x W x H/4, whereW x H is  cision trees with orthogonal splits. When training the fine
the size of an input image. detector, hard negative samples are mined from the images
Channel Pooling: Convolution and pooling are carried Without pedestrians, and are used to update the training set
out on each channel, which ignores the relations among chan-
nels. We propose to use a max-min operation, i.e., channel 4. EXPERIMENTAL RESULTS
pooling, between channels to capture such relations. Tke ma
operation is similar to operator OR, capturing complemgnta We investigate the performance of the proposed method on
information of the two channels. The min operation is simila two public pedestrian datasets: INRIA and Caltech.
to operator AND, which combines the two channels. In the coarse pedestrian detection, a 3-stage cascaded
Given L x K channels, its expensive to use all channelACF detector generates candidate windows, which combines
pairs for pooling, which can produdé x (KX — 1) channels. 32, 128 and 512 decision trees in each cascade. Experiments
Considering that the first PCA filters are the most importantshow that the coarse detection procedure hadarggall rate
we choose the first convolutional layer maps, correspondingn the INRIA dataset, and the speed is 14.3fps. In compari-
to the first PCA filters, to calculate channel pooling feagiire son, the recall rates of three other popular object loctidina
as approaches, i.e., Selective Search [21], BING [22] and Edge
_ Boxes [23], are 2%, 61% and 93%, respectively.
{ l;%ﬁ{ﬁﬁ:ij:;: ; 2?5{{551:(? 75;1}1?:)}} (7) In the fine detection, the number of PCA filters is em-
’ pirically set asL. = 8, and the size of filtersn = 5. As
whereF'S) . andF'S) ;) denote a channel pair with two shown in Fig.5, with PCA convolution the miss detection rate
first convolutional layer maps (obtained by first PCA filters) (1.0-Recall) of the proposed approach is 157 ith spa-

of kW andk(® ACF channels. tial local pooling and channel pooling, the miss rate reduce
Finally, the feature maps from spatial pooling and channelo 14.79 and 14.24;, respectively. In comparison with the
pooling are concentrated to form the PCA-CCF as 3-stage ACF detector of a miss rate 224@he performance
F={FS,FC} (8)
.
3. PEDESTRIAN DETECTION o !
The calculation of PCA-CCF is much more computationally :igi
expensive than the ACF features for the usage of convolution 30f

al operations. Therefore, we propose a coarse-to-fine-detec
tion strategy, as shown in Fig. 4.

The coarse detector used to localize candidates has the
following characteristics: high efficiency, precise ldzat

miss rate

tion, and high recall rate. A 3-stage cascaded Adaboosticlas 22.00% 3-stage ACF classifier o

fier trained with the ACF is employed as the coarse detector. o5 = ﬁgi% EC'TED‘”

Sliding window classification is applied on image pyramids 16*3. e o e =

to perform detection. Using Integral image and a 3-stage cas false positives per image

caded ACF detector, the coarse detection has a high detectifig- 5. Validation of the convolutional and pooling opera-
tions.
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Fig. 6. Comparison of detection performance on the INRIA and thiéeCla datasets.

gain is about &. the Caltech dataset.

For final detection performance, DET curves, the mis-  Inthe future, it is useful to try other orthogonal filters,.|.
s rate versus false positive per image, is employed as th&avelet and Gabor filters, to further improve the perfornganc
protocol in [1]. We conduct experiments on INRIA and of PCA-CCF. Itis also interesting to extend the PCA-CCF to
Caltech pedestrian datasets. For all datasets, we compagther detection or recognition tasks.
with three classical methods which are VJ [4], HOG [5],
LatSvm-V2 [24], baseline detector ACF [1], and other
six top 10 methods [1] which involve Shapelet [12], Chn-
Ftrs [15], ConvNet [16], Sketch Tokens [18], VaryFast [25],
FPDW [26], Roerei [27], MultiFtr-Motion [28], MOCO [29],
MT-DPM+Context [30], ACF-SDt [31].
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is comparable with the performance of two best approach:

and Fig.6c¢ it can be seen that our approach achieves %7.87§
and 6.28; performance gain compared with the ACF based
approach on the Reasonable and Overall pedestrians, res
tively. On the Caltech Reasonable (pedestrian resolution
reasonable) it reports the best result. On the Caltech @vera
(with pedestrians of very low resolution) it reports theet

text information. Some of our detection examples are show
in Fig.7.

5. CONCLUSION AND FUTUREWORKS

We propose PCA filters based convolutional channel feature
(PCA-CCF) using a forward convolutional network. Without
any back-propagation operation, PCA-CCF achieves highe
discriminative capability than the convolutional neuratn
work (CNN) and the hand-craft Aggregate Channel Features
Based on the proposed PCA-CCF, we propose a coarse-to-fi
pedestrian detection framework, which is validated to have
comparable performance to several representative appeeac

on the INRIA dataset, and a significant performance gain offi9- 7- Detection examples from INRIA dataset (first row),
and Caltech dataset (second and third rows).
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