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ABSTRACT

In this paper, we propose a kind of image representation,
named PCA filters based convolutional channel features
(PCA-CCF) for pedestrian detection. The motivation is to
use the convolutional network architecture with orthogonal
PCA filters to enhance the state-of-the-art aggregate channel
features (ACF). In PCA-CCF, the convolutional operation
improves the feature robustness to pedestrian local deforma-
tion. The learned PCA filters reduce the correlations among
features of each channel, and therefore, improve feature dis-
crimination capability. With the proposed PCA-CCF features
and cascaded AdaBoost classifiers, we develop a coarse-to-
fine pedestrian detection approach. Experiments show that
such approach achieves 3.04%, 17.87% and 6.28% perfor-
mance gain on the INRIA, Caltech Reasonable and Caltech
Overall pedestrian datasets, respectively.

Index Terms— Pedestrian detection, Channel features, P-
CA, Convolutional network

1. INTRODUCTION

Pedestrian detection in natural scene images contributes to a
variety of applications, including robotics, intelligenttrans-
portation and video surveillance systems. Although exten-
sively investigated, the low performance on public bench-
marks indicates that image based pedestrian detection re-
mains an open problem [1–3]..

Feature representation has been considered one of the
most critical factors in the pedestrian detection problem,and
exploring image features that can effectively and efficiently
discriminate pedestrians from the clutter backgrounds has
been the focus of the community. Hand-craft image fea-
tures developed for pedestrian detection include Haar-like
features [4], Histogram of Oriented Gradients (HOG) [5],
v-HOG [6],covariance features [7], Local Binary Pattern
(LBP) [8], HOG-LBP [9], HOG-SURF [10], Edgelet [11],
Shapelet [12], Multi-Scale Orientation (MSO) [13], and
pose-invariant descriptors [14]. A recent research demon-
strates superior detection performance and efficiency when
using integral features from multiple channels of color, gra-
dient and orientation [15]. The features extracted from

multiple channels are called Aggregate Channel Features
(ACF) [1,15].

On the other hand, various learning based features have
attracted attentions in recent years. P. Sermanet et al. pro-
posed to learn multi-stage features for pedestrian detection us-
ing convolutional neural network (CNN) [16]. Ren et al. pro-
posed to incorporate unsupervised learning to extract sparse
coding histogram features [17]. Lim et al. proposed to use
unsupervised learning to extract mid-level features that pre-
cisely capture pedestrian contours [18]. Learning based fea-
tures leverage unsupervised or back-propagation algorithms
to specify object representations, and demonstrate excellen-
t robustness and adaptability. Despite superior performance,
these learned features are not as descriptive as hand-craftfea-
tures, and are often computationally expensive. Some back-
propagation based feature learning algorithms, i.e., CNN,of-
ten require a large number of training samples to guarantee
performance.

In this paper, we propose the PCA filters based convolu-
tional channel features (PCA-CCF) for pedestrian detection.
Such work is rooted in the success of integration of multiple
channel features, and is also inspired by the success of a sim-
ple deep learning method, PCANet [19], which extracts effec-
tive features using PCA filters and convolutional operations.
Our contribution is applying PCA filters to reduce the corre-
lations among feature channels, and use convolutional oper-
ations to improve robustness of features. Without using the
back-propagation, PCA-CCF is not sensitive to the number
of training samples. We also propose using channel pooling
to compensate conventional spatial pooling. By these strate-
gies, PCA-CCF incorporates both the discriminative property
of learned features and the descriptive capability of hand-craft
features.

In pedestrian detection, the conventional ACF is firstly
used to train a coarse detector, which is used to generate a set
of candidate windows. The candidate windows have a high
recall rate on pedestrians, but include lots of false detection-
s. PCA-CCF is then extracted on these windows and fed to a
cascaded AdaBoost classifier to perform fine classification.

The remainder of this paper is organized as follows. In
section 2, the PCA filters based convolutional channel fea-
tures extraction is described. In section 3, the pedestriande-
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tection framework is elaborated. In section 4, experimental
results are presented, and in section 5 we conclude the paper
with discussion of future directions.

2. FEATURE EXTRACTION

To make the paper self-contained, the aggregate channel fea-
tures (ACF) are first reviewed, and the procedures of learning
PCA filters and extraction of convolutional channel features
are then described.

2.1. Aggregate Channel Features

Given a sample imageI, ACF computes channels using linear
or non-linear transformation ofI as

f = Ω(I), (1)

whereΩ is a first-order function as a sum of pixels in a rect-
angular image region or higher-order functions that are com-
puted using multiple first-order in a single channel. Down-
sampling by2× 2 is used to reduce the size of channel maps.
As shown in Fig.1, ACF has ten channels: three color chan-
nels (L, U and V channels), a gradient magnitude channel (|G|
channel), histogram of oriented gradients channels (G1-G6

channels). The ACF code is available online1.

Fig. 1. Aggregate Channel Features of a pedestrian sample.

Because the first-order feature can be computed efficiently
using integral images, extracting ACF takes about 0.05∼0.2s
per640× 480 image, depending on theΩ selected.

2.2. Learning PCA filters

Compared with PCANet filters derived from raw image
patches, PCA-CCF learns a filter group for every ACF
channel map. GivenN training pedestrian sample images
I = {Ii}, i = 1, 2, · · · , N of sizew × h, their ACF is de-
noted as{fi,k}, i = 1, 2, · · · , N, k = 1, 2, · · · ,K. For
the kth channel of a pedestrian sample image, we take
a m × m patchxi,k around each pixel to obtain patches
Xi,k = [x1,k, x2,k, · · ·xwh,k] ∈ R

mm×wh. Collecting all
patches of thekth channel ofI, we get

Xk = [X1,k, X2,k, · · ·XN,k] ∈ R
mm×Nwh. (2)

PCA uses an orthogonal transformation to convert a set
of possibly correlated variables into a set of values of linear-
ly uncorrelated. It minimizes the reconstruction error within

1http://vision.ucsd.edu/ pdollar/toolbox/doc/

a set of orthogonal vectors. Applying PCA for each feature
channel, we get

min
k

∥

∥Xk − V V TXk

∥

∥

2

s.t.V V T = IL, k = 1, 2, · · · ,K,
(3)

whereIL is an identity matrix of sizeL × L. The solution
V of Eq.(3) is a matrix combining principle eigenvectors.
The eigenvectors are reshaped to 2-dimensional PCA filters
of m×m pixels, which are expressed as

Pl,k = mat(Vi) ∈ Rm×m, l = 1, 2, · · ·L, (4)

wheremat(·) is a function that reshapes a vector to a matrix.
We experimentally set the size of PCA filters as5 × 5

pixels (m × m = 5 × 5). Ten groups of learned PCA filters
are shown in Fig. 2. According to PCA theory, top PCA
filters contain the most information of the samples (channel
features). It can be seen that the orientations of the first PCA
filters in the HOG channels (G1-G6 channels) are consistent
with the quantized orientations ofG1-G6 channels.

Fig. 2. Visualization of top PCA filters of ten channels. Each
group (column) shows top eight eigenvectors.

2.3. Convolutional Channel Features

With learned PCA filters, the ACF{fi,k}, i = 1, 2, ..., N, k =
1, 2, ...,K are convoluted to calculate the PCA-CCF. This
procedure has three steps: convolution with topL PCA filter-
s, spatial local pooling and channel pooling, as shown in Fig.
3. We take spatial local pooling and channel pooling instead
of hashing and histogram as in PCANet.

Fig. 3. PCA-CCF extraction.

Convolution: Each ACF channel convolves withL PCA
filters, and outputsL convolutional layer maps, as

CONVl,k = Pl,k ◦ fk, l = 1, 2, ..., L, k = 1, 2, ...,K (5)
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wherePl,k is thelth PCA filter of thekth channel,fk is the
kth channel feature map. After convolution, the number of
ACF feature maps (channels) increases toL×K.

Spatial Local Pooling: Similar to the CNN, a pooling op-
eration is applied to reduce the feature dimensionality, aswell
as to achieve robustness to local variations. On the convolu-
tional layer maps, the max and min pooling operations [20]are
performed to calculate spatially pooled feature maps, as
{

FS MAXl,k(i, j) = max{CONVl,k(R(i, j))}
FS MINl,k(i, j) = min{CONVl,k(R(i, j))}

, (6)

whereR(i, j) is a region surrounding pixel(i, j) in the lth
convolutional layer of thekth channel. As ACF conduct-
s 2 × 2 down-sampling, the dimensionality of all spatially
pooled mapsFS = {FS MAX,FS MIN} after spatial
local pooling is2× L×K ×W ×H/4, whereW × H is
the size of an input image.

Channel Pooling: Convolution and pooling are carried
out on each channel, which ignores the relations among chan-
nels. We propose to use a max-min operation, i.e., channel
pooling, between channels to capture such relations. The max
operation is similar to operator OR, capturing complementary
information of the two channels. The min operation is similar
to operator AND, which combines the two channels.

GivenL × K channels, its expensive to use all channel
pairs for pooling, which can produceK × (K − 1) channels.
Considering that the first PCA filters are the most important,
we choose the first convolutional layer maps, corresponding
to the first PCA filters, to calculate channel pooling features,
as
{

FC MAXk(1),k(2) = max{FS1,k(1) , FS1,k(2)}
FC MINk(1),k(2) = min{FS1,k(1) , FS1,k(2)}

, (7)

whereFS1,k(1) andFS1,k(2) denote a channel pair with two
first convolutional layer maps (obtained by first PCA filters)
of k(1) andk(2) ACF channels.

Finally, the feature maps from spatial pooling and channel
pooling are concentrated to form the PCA-CCF as

F = {FS, FC} (8)

3. PEDESTRIAN DETECTION

The calculation of PCA-CCF is much more computationally
expensive than the ACF features for the usage of convolution-
al operations. Therefore, we propose a coarse-to-fine detec-
tion strategy, as shown in Fig. 4.

The coarse detector used to localize candidates has the
following characteristics: high efficiency, precise localiza-
tion, and high recall rate. A 3-stage cascaded Adaboost classi-
fier trained with the ACF is employed as the coarse detector.
Sliding window classification is applied on image pyramids
to perform detection. Using Integral image and a 3-stage cas-
caded ACF detector, the coarse detection has a high detection

Fig. 4. Pedestrian detection framework.

efficiency [1]. It also has a high recall rate on pedestrians,but
include lots of false detections.

PCA-CCF is then extracted from these candidate windows
and fed to another cascaded AdaBoost classifier to perform
final detection. The weak classifiers used for the AdaBoost
classifier are decision trees. The reason why we choose de-
cision trees is that channel features are linearly de-correlated
by the PCA filters, and therefore, could be coupled to the de-
cision trees with orthogonal splits. When training the fine
detector, hard negative samples are mined from the images
without pedestrians, and are used to update the training set.

4. EXPERIMENTAL RESULTS

We investigate the performance of the proposed method on
two public pedestrian datasets: INRIA and Caltech.

In the coarse pedestrian detection, a 3-stage cascaded
ACF detector generates candidate windows, which combines
32, 128 and 512 decision trees in each cascade. Experiments
show that the coarse detection procedure has a 95% recall rate
on the INRIA dataset, and the speed is 14.3fps. In compari-
son, the recall rates of three other popular object localization
approaches, i.e., Selective Search [21], BING [22] and Edge
Boxes [23], are 23%, 61% and 93%, respectively.

In the fine detection, the number of PCA filters is em-
pirically set asL = 8, and the size of filtersm = 5. As
shown in Fig.5, with PCA convolution the miss detection rate
(1.0-Recall) of the proposed approach is 15.77%. With spa-
tial local pooling and channel pooling, the miss rate reduces
to 14.79% and 14.24%, respectively. In comparison with the
3-stage ACF detector of a miss rate 22.00%, the performance
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Fig. 5. Validation of the convolutional and pooling opera-
tions.
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(a) INRIA
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(b) Caltech Reasonable
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79.81% Roerei
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(c) Caltech Overall

Fig. 6. Comparison of detection performance on the INRIA and the Caltech datasets.

gain is about 8%.
For final detection performance, DET curves, the mis-

s rate versus false positive per image, is employed as the
protocol in [1]. We conduct experiments on INRIA and
Caltech pedestrian datasets. For all datasets, we compare
with three classical methods which are VJ [4], HOG [5],
LatSvm-V2 [24], baseline detector ACF [1], and other
six top 10 methods [1] which involve Shapelet [12], Chn-
Ftrs [15], ConvNet [16], Sketch Tokens [18], VaryFast [25],
FPDW [26], Roerei [27], MultiFtr-Motion [28], MOCO [29],
MT-DPM+Context [30], ACF-SDt [31].

The miss rate on INRIA is 14.24% which has an improve-
ment over ACF baseline by 3.04%, as show in Fig.6a. It
is comparable with the performance of two best approach-
es. Caltech pedestrian dataset is a more complicated dataset,
with clutter background and large scale variation. In Fig.6b
and Fig.6c it can be seen that our approach achieves 17.87%
and 6.28% performance gain compared with the ACF based
approach on the Reasonable and Overall pedestrians, respec-
tively. On the Caltech Reasonable (pedestrian resolution is
reasonable) it reports the best result. On the Caltech Overall
(with pedestrians of very low resolution) it reports the second
best result. It should be noted that the best approach uses con-
text information. Some of our detection examples are shown
in Fig.7.

5. CONCLUSION AND FUTUREWORKS

We propose PCA filters based convolutional channel features
(PCA-CCF) using a forward convolutional network. Without
any back-propagation operation, PCA-CCF achieves higher
discriminative capability than the convolutional neural net-
work (CNN) and the hand-craft Aggregate Channel Features.
Based on the proposed PCA-CCF, we propose a coarse-to-fine
pedestrian detection framework, which is validated to have
comparable performance to several representative approaches
on the INRIA dataset, and a significant performance gain on

the Caltech dataset.
In the future, it is useful to try other orthogonal filters, i.e.,

Wavelet and Gabor filters, to further improve the performance
of PCA-CCF. It is also interesting to extend the PCA-CCF to
other detection or recognition tasks.
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Fig. 7. Detection examples from INRIA dataset (first row),
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