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ABSTRACT
We introduce methods to estimate infinite-dimensional Re-
gion Covariance Descriptors (RCovDs) by exploiting two
feature mappings, namely random Fourier features and the
Nyström method. In general, infinite-dimensional RCovDs
offer better discriminatory power over their low-dimensional
counterparts. However, the underlying Riemannian structure,
i.e., the manifold of Symmetric Positive Definite (SPD) ma-
trices, is out of reach to great extent for infinite-dimensional
RCovDs. To overcome this difficulty, we propose to approx-
imate the infinite-dimensional RCovDs by making use of
the aforementioned explicit mappings. We will empirically
show that the proposed finite-dimensional approximations
of infinite-dimensional RCovDs consistently outperform the
low-dimensional RCovDs for image classification task, while
enjoying the Riemannian structure of the SPD manifolds.
Moreover, our methods achieve the state-of-the-art perfor-
mance on three different image classification tasks.

Index Terms— Region Covariance Descriptor, Repro-
ducing Kernel Hilbert Space, Riemannian Geometry

1. INTRODUCTION

In this paper, we propose methods to approximate the re-
cently introduced infinite-dimensional Region Covariance
Descriptors (RCovDs) [1, 2]. The motivation here stems
from the fact that the Riemannian geometry -which is es-
sential in analyzing RCovDs- does not apply verbatim to
the infinite-dimensional case. Hence, by approximating the
infinite-dimensional RCovDs with finite-dimensional ones,
one could seamlessly exploit the rich geometry of RCovDs
and tools developed upon that to do the inference.

RCovDs [3] are robust and fairly novel image descrip-
tors that encode the second order statistics of features. One
could think of it as capturing the relative correlation of fea-
tures along their powers as a mean for representation. In com-
puter vision community, RCovDs have been successfully em-
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ployed to address various visual tasks. Notable examples in-
clude pedestrian detection [3], texture categorization [4], hu-
man epithelial cell classification [5], and DTI analysis [6].

Despite their attractiveness and success, RCovDs are SPD
matrices and naturally lie on a connected Riemannian mani-
fold. Consequently, Euclidean geometry is not appropriate to
analyze them as shown in several recent studies [3, 6, 7, 4, 8].

In an attempt to encode more information in RCovDs, we
have recently introduced infinite-dimensional RCovDs [1].
To this end, a mapping from the low-dimensional Euclidean
space to a Reproducing Kernel Hilbert Space (RKHS), i.e.,
φ : Rd → H, is used along the kernel trick to compute several
forms of Bregman divergences between infinite-dimensional
RCovDs in H. In practice, infinite-dimensional RCovDs
are rank deficient. This is because a valid d-dimensional
RCovD requires more than d independent observations which
translates into the impractical situation of having endless
observations for the infinite-dimensional RCovDs. This dif-
ficulty, while partly resolved through regularization, deprives
us from exploiting the geometry of the space. More specif-
ically, tangent spaces, exponential and logarithm maps, and
geodesics are out of reach to our best knowledge.

In this paper, we overcome the aforementioned issue by
introducing two methods to approximate infinite-dimensional
RCovDs by finite-dimensional ones. To this end, we use
random Fourier features [9] and the Nyström method [10]
to learn a mapping z : Rd → RD, d ≤ D such that
〈φ(xi), φ(xj)〉H ' z(xi)

T z(xj). Having the mapping
z(·) at our disposal, we approximate the infinite-dimensional
RCovDs with D × D SPD matrices and take advantage of
the Riemannian geometry of SD++

1 to analyze the result-
ing RCovDs. We will show that both methods constantly
outperform the low-dimensional RCovDs and achieve the
state-of-the-art performance on three challenging image clas-
sification tasks, namely material categorization, virus cell
identification, and scene classification. Moreover, our experi-
ment shows that the RCovDs in the learned space could even
outperform the infinite-dimensional ones. This is of course
inline with findings in [11, 12, 13].

1The manifold of D ×D SPD matrices.
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2. RELATED WORK

We start this section by formally defining the region covari-
ance descriptors [3]. Let X =

[
x1|x2| · · · |xn

]
,xi ∈ Rd be

a d×nmatrix of n observations (extracted from an image or a
video). The RCovD C ∈ Sd++ as its name implies is defined
as

C =
1

n

n∑
i=1

(xi − µ)(xi − µ)T = XJJTXT , (1)

where µ = 1
n

∑n
i=1 xi is the sample mean of the observa-

tions, J = n−
3
2 (nIn − 1n1T

n ), and 1n is a column vector of
n ones.

Based on Eq. (1), an RCovD CX in an RKHS H with
dimensionality |H| can be defined as

CX = ΦXJJ
T ΦT

X , (2)

where ΦX =
[
φ(x1)|φ(x2)| · · · |φ(xn)

]
and φ : Rd → H is

the implicit mapping toH.
While embeddings into an RKHS seems preferable in

many applications, the applicability of infinite-dimensional
RCovDs is limited. This is evident by considering the sit-
uation where the dimensionality |H| approaches ∞, which
leads to CX being semi-definite. As a consequence, CX is
on the boundary of the positive cone and at infinite distance
form SPD matrices.

In the following two sections, we will show how an
infinite-dimensional CX can be approximated by a finite
D ×D one. But before delving into that, we establish some
notations and definitions that will be used in the subsequent
sections.

Definition 1 (Real-valued Positive Definite Kernels) Let
X be a nonempty set. A symmetric function k : X × X →
R is a positive definite (pd) kernel on X if and only if∑n

i,j=1 cicjk(xi, xj) > 0 for any n ∈ N, xi ∈ X and
non-zero vector c = (c1, c2, · · · , cn)T ∈ Rn.

According to Mercer’s theorem, for any pd kernel k(·, ·),
there exists a mapping φ : X → H such that: ∀xi,xj ∈
X , k(xi,xj) = 〈φ(xi), φ(xj)〉H.

Our main interest in this paper is the Riemannian mani-
fold of d × d SPD matrices, i.e., Sd++. We will use TPM
to show the tangent space of manifoldM at point P . For the
Sd++, the tangent space is the space of symmetric matrices and
the logarithm map logP (·) :M→ TPM is identified by the
principal matrix logarithm [14]. The Riemannian structure in-
duced by the Affine Invariant Riemannian Metric (AIRM) [6]
is considered the correct way of analyzing SPD matrices. The
geodesic distance between points C1 and C2 ∈ Sd++ based
on AIRM is

δR(C1,C2) = ‖ log(C
−1/2
1 C2C

−1/2
1 )‖F , (3)

where ‖ · ‖F denotes the Frobenius norm.

3. RANDOM FOURIER FEATURES

We start this section by providing a brief description of the
method of random Fourier features for approximating φ(·).
Since in our experiments in § 5, we will only use RBF ker-
nel, we limit the discussion here to this special kernel. The
signature of other important kernels can be found in [9, 15].

According to the Bochner theorem [16], a shift-invariant
kernel2 such as RBF kernel can be obtained by the following
Fourier integral

k(xi − xj) =

∫
Rd

p(ω)ejω
Txie−jω

Txjdω. (4)

In other words, k(xi,xj) = k(xi − xj) is the expected
value of ζω(xi)ζ

∗
ω(xj) according to the distribution p(ω)

where ζω(x) = ejω
Tx . As shown in [9], the function

zF (x) =
√

2 cos(ωTx + b) satisfies the aforementioned cri-
terion for real kernels, i.e., E[zF (xi)zF (xj)] = k(xi,xj)
with ω and b being random variables drawn from p(ω)
and [0, 2π], respectively. For the RBF kernel k(xi,xj) =
exp(−‖k(xi − xj)‖2/2σ2), p(ω) = N (0, σ−2Id) [9].

As such, let ω1, ω2, · · · , ωD, ωi ∈ Rd, be i.i.d sam-
ples drawn form the normal distribution N (0, σ−2Id) and
b1, b2, · · · , bD be samples uniformly drawn from [0, 2π].
Then, the D dimensional estimation of φ(x) is given by

zF (x) =

√
2

D

[
cos(ωT

1 x+ b1), · · · , cos(ωT
Dx+ bD)

]
. (5)

Having the mapping zF : Rd → RD at our disposal, our
first estimation of an infinite-dimensional RCovD can be ob-
tained as

ĈX = ΦXJJ
T ΦT

X , (6)

where ΦX =
[
zF (x1)|zF (x2)| · · · |zF (xn)

]
.

Algorithm 1 outlines the details of computing RCovDs
using random Fourier features for the RBF kernel.

4. NYSTRÖM METHOD

While in § 3, an approximation to the embedding function
φ(·) was provided, we note that not only an arbitrary kernel
k(·, ·) may not satisfy the Bochner theorem (e.g., if it is not
shift-invariant), but even if it is, it may not be possible to ob-
tain p(ω) analytically. To alleviate this limitation, we pro-
pose a data-dependent estimation of the RKHS H using the
Nyström method [10].

Given D = {x1,x2, · · · ,xM} a collection of M training
examples3, a rankD approximation ofK = [k(xi,xj)]M×M
can be written as ZTZ. Here, ZD×M = Σ1/2V with Σ and

2A kernel function is shift invariant if k(xi,xj) = k(xi − xj).
3Observations extracted from training images in our case.
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Algorithm 1 Approximate infinite-dimensional RCovD
using random Fourier features
Input:

• X =
[
x1|x2| · · · |xn

]
, xi ∈ Rd, matrix of n feature vectors

• σ2, scale of the RBF kernel

• D, target dimensionality

Output:
• ĈX ∈ SD++, approximate infinite-dimensional RCovD

1: {ωi}Di=1 ← i.i.d samples drawn fromN (0, σ−2Id×d).
2: {bi}Di=1 ← uniform samples drawn from [0, 2π].
3: for j = 1→ n do
4: Compute zF (xj) using Eq. (5).
5: end for
6: Compute ĈX using Eq. (6)

V being the top D eigenvalues and corresponding eigenvec-
tors of K. Based on this low-rank approximation, one can
obtain a D-dimensional vector representation of the spaceK
as

zN (x) = Σ−1/2V
(
k(x,x1), · · · , k(x,xM )

)T
. (7)

Given X =
[
x1|x2| · · · |xn

]
, a set of n observations, the

corresponding RKHS region covariance descriptor estimation
using the Nyström method is obtained as

ĈX = ΦXJJ
T ΦT

X , (8)

where ΦX =
[
zN (x1)|zN (x2)| · · · |zN (xn)

]
.

Algorithm 2 summarizes the discussion about estimating
RCovDs using the Nyström method in one pseudo-code.

5. EXPERIMENTS

In this section, we evaluate the proposed approximate infinite-
dimensional RCovDs on three different classification tasks,
namely material categorization, virus cell identification, and
scene classification. For benchmarking, we compare the
accuracy of the Nearest Neighbor (NN) classifier on low-
dimensional manifold against NN in higher-dimensional
manifolds obtained by random Fourier features or the Nyström
method.

Beside NN classifier, we will evaluate the performance
of the state-of-the-art method of Covariance Discriminant
Learning (CDL) [17] for low and high-dimensional SPD
manifolds. The CDL technique utilizes the identity tangent
space of the SPD manifold to perform kernel Partial Least
Squares (kPLS) [18]. Partial Least Squares (PLS) can be un-
derstood as a dimensionality reduction technique that models
relations between two sets of variables through a latent space.
In the context of classification, PLS and its kernelized version
can be used to model the relations between feature vectors
and their representative classes.

The different algorithms evaluated in our experiments are
referred to as

Algorithm 2 Approximate infinite-dimensional RCovD
using the Nyström method
Input:

• X =
[
x1|x2| · · · |xn

]
, xi ∈ Rd, matrix of n feature vectors

• D = {xi}Mi=1,xi ∈ Rd, a collection of training examples

• D, target dimensionality

Output:
• ĈX ∈ SD++, approximate infinite-dimensional RCovD

1: Compute the kernel matrix K = [k(xi,xj)]M×M .
2: Σ← diagonal matrix of top D eigenvalues of K.
3: V ← associated eigenvectors of Σ.
4: for j = 1→ n do
5: Compute zN (xj) using Equation 7.
6: end for
7: Compute ĈX using Equation 8.

• NN: AIRM based NN classifier on low-dimensional
RCovDs.

• NNF: AIRM based NN classifier on approximate
infinite-dimensional RCovDs obtained by random
Fourier features.

• NNN: AIRM based NN classifier on approximate
infinite-dimensional RCovDs obtained by the Nyström
method.

• CDL: CDL on low-dimensional RCovDs.

• CDLF: CDL on approximate infinite-dimensional
RCovDs obtained by random Fourier features.

• CDLN: CDL on approximate infinite-dimensional
RCovDs obtained by the Nyström method.

In what follows, we first elaborate on how rich RCovDs
can be obtained for each task. This is followed by in-depth
discussions on the performance of approximate infinite-
dimensional RCovDs obtained through the processes de-
scribed in § 3 and § 4, respectively.

5.1. Material Categorization

Material categorization is the task of classifying materials
from their appearance in single images taken under unknown
viewpoint and illumination conditions. For this experiment,
we have used the UIUC material classification dataset [19]
which contains 18 classes of complex material categories
“taken in the wild” (see Fig. 1 for sample images). The
images were mainly selected to have various geometric fine-
scale details. We split the database into training and test sets
by randomly assigning half of the images of each class to
the training set and using the rest as test data. The process
of random splitting was repeated 10 times and the average
recognition accuracies along standard deviations will be re-
ported here.
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Fig. 1: Sample images for datasets used in this work. Top:
UIUC [19], Middle: Virus [21], Bottom: TinyGraz03 [22].

To generate RCovDs, a feature vector is assigned to each
pixel at position (x, y) in an image I by

F(x,y) =
[
IR(x, y), IG(x, y), IB(x, y),

∣∣∣∣∂I∂x
∣∣∣∣ , ∣∣∣∣∂I∂y

∣∣∣∣ , ∣∣∣∣∂2I∂x2

∣∣∣∣ ,∣∣∣∣∂2I∂y2

∣∣∣∣ , |G(0,0)(x, y)|, · · · , |G(u,v)(x, y)|
]
, (9)

where Ic(x, y), c ∈ {R,G,B}, denotes color information, the
next four entries are the magnitude of intensity gradients and
the magnitude of Laplacians along x and y directions, and
G(u,v)(x, y) is the response of a 2D Gabor wavelet [20] cen-
tered at (x, y) with orientation u and scale v. We extracted
Gabor wavelets at four orientations and three scales. There-
fore, each pixel is described by a 19 dimensional feature vec-
tor (i.e., 3 color, 4 gradients, and 12 Gabor features).

Table 1 shows the recognition accuracies for the studied
methods. The correct classification rates obtained by NN
clearly show that the proposed RCovDs are more discrimi-
native than their low-dimensional counterparts. We also note
that NNF and NNN achieve comparable performances to
the more involved CDL in low-dimensional manifold.

The state-of-the-art performance on this dataset is 43.5%
reported by [19]. CDL on the proposed RCovDs (both ran-
dom Fourier features and Nyström) outperforms the state-of-
the-art performance by at least 2.8% percentage points.

5.2. Virus Classification

We performed an experiment to classify cell images using
the Virus dataset [21]. The dataset contains 1500 images of
15 different classes (100 samples per class). The images are
formed from Transmission Electron Microscopy technique
and re-sampled to 41 × 41 pixel grayscale image (see Fig. 1
for examples). Here, RCovDs are obtained using the features
described in Eq. (9) with one modification. For this task, we
used Gabor wavelets at four orientations and five scales.

Our empirical results are reported in Table 1. The average
correct recognition rate with both CDLF and CDLN is
superior to the state-of-the-art performance of 81.2% reported
in [1] using infinite-dimensional RCovDs. We conjecture that
computing the RCovDs with both random Fourier features

Table 1: Recognition accuracies for the UIUC [19], Virus [21], and
TinyGraz03 [22] datasets.

Method UIUC Virus TinyGraz03
NN 26.5% ± 3.7 58.8% ± 5.4 34%
NNF 35.9% ± 3.0 67.1% ± 4.2 42%
NNN 35.6% ± 2.7 69.5% ± 4.8 44%
CDL 36.3% ± 2.0 75.5% ± 2.5 41%
CDLF 47.4% ± 3.1 82.5% ± 2.9 55%
CDLN 46.3% ± 2.6 81.4% ± 3.1 57%

and the Nyström method reveals the nonlinear patterns in data
(as also evidenced in [11]). This is emphasized by the Rie-
mannian structure of SD++ (as CDL requires its tangent space)
which is not available for the infinite-dimensional RCovDs.

5.3. Scene Classification

For the last experiment, we considered the task of scene clas-
sification using TinyGraz03 dataset [22]. The dataset con-
tains 1148 indoor and outdoor images (see Fig. 1 for exam-
ples) with a spatial resolution of 32 × 32 pixels.The images
are presented in 20 classes with at least 40 samples per class.
This dataset is quite diverse, with scene categories being cap-
tured from various viewpoints and under various lighting con-
ditions. We used the recommended train/test split provided by
the authors. The correct recognition rate achieved by humans
on this dataset is 30% [22].

The RCovDs for this task were obtained using the first 7
features in Eq. (9) (i.e., 3 color and 4 image gradients). Ta-
ble 1 indicates that computing RCovDs using random Fourier
features and the Nyström method offers notable enhancement
in term of discriminatory power over the original RCovDs.
We also note that NNF and NNN outperform the more
involved CDL.

The state-of-the-art recognition accuracy on this dataset
is reported to be 46% [22]. Interestingly, CDLF and
CDLN significantly outperform the state-of-the-art method
(more than 9 percentage points) and human performance
(more than 25 percentage points).

6. CONCLUSIONS AND FUTURE WORK

We have made use of random Fourier feature and the Nyström
method to compute two approximations to infinite-dimensional
RCovDs. Our experimental evaluation has demonstrated
that the proposed RCovDs significantly outperform the low-
dimensional ones on image classification task. More im-
portantly, our RCovDs provide a framework in which the
well-known Riemannian geometry of the SPD matrices can
be taken into account. In the future, we intend to explore
how the proposed approach can be extended to other types of
Riemannian manifolds, such as Grassmannian manifolds.
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