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ABSTRACT 

 

Principal Component Analysis (PCA) is one of the most 

widely used tools for the representation of high-dimensional 

data. Many different versions have been proposed to 

enhance the robustness of the model. Most of these ideas are 

not median based formulation, which is always a robust 

estimator in statistics. In this paper, we attempt to design a 

new median based PCA model based on k-medians 

clustering, for which each principal component is always the 

spatial median of the projected space. We prove that the 

proposed method converges. We also compare the proposed 

method with several state-of-the-art methods including 𝑙1-

PCA, RPCA and RPCA-OM. Experimental results show 

that the proposed k-medians clustering based PCA performs 

the best in many cases.   

Index Terms— k-medians, Clustering, PCA, image 

reconstruction, dimensionality reduction 

 

1. INTRODUCTION 

 

Principal Component Analysis (PCA) [1-2] is one of 

the most prominent learning tools for linear data 

transformation techniques in image processing and machine 

learning. It has been widely used for the representation of 

high-dimensional data such as image data for appearance, 

shape, and visual tracking and is also popularly used as a 

preprocessing step to project high-dimensional data into a 

low-dimensional subspace. However, PCA also has 

limitations. Since large errors will dominate the mean 

square error (MSE), original PCA is prone to the presence 

of outliers that are significantly far away from the rest of the 

data points [3–5]. 

Many robust PCA methods have been proposed to 

handle the problem of outliers. One of the most extensive 

studies is the  𝑙1 norm PCA (or 𝑙1-PCA) model [6-10] as 𝑙1 

norm is a robust solver to the problem of outliers. Many 

different ways have been proposed to solve the 𝑙1 -PCA 

model such as linear programming [8]. However, most of 

these techniques do not preserve the rotation invariant 

property of the output projection matrix. Kwak reformulated 

the 𝑙1-PCA model using the dual space technique, which can 

find a local optimal solution swiftly and well preserve the 

rotational invariant property of the output projection matrix 

[12]. Other than 𝑙1-PCA model, Candes et. al. proposed the 

low-rank matrix factorization, namely robust PCA (RPCA) 

[13]. Its essential idea is to polish the input data matrix 𝐗 in 

the sense of 𝑙1 norm so that the rank of the matrix 𝐗 reaches 

minimum. This method gives excellent results especially 

when the input data matrix is heavily corrupted by “salt and 

pepper” noise. More recently, Nie et. al. proposed a robust 

PCA based on an optimal mean formulation (RPCA-OM) 

[14]. The key contribution of this work is to find the correct 

mean of the input data matrix X by a nice optimization 

technique. This method outperforms many existing PCA 

methods.  

 Although most PCA methods perform excellently 

in many applications and are robust to outliers, they are not 

median based formulation. In this work, we attempt to 

design a new PCA model based on median modelling. 

Statistically, median plays an important role not only its 

robustness to outliers but also always serves as a good 

estimator [14]. The proposed median model is designed 

based on our mathematically proved result: the local optimal 

solutions of 𝑙1-PCA model can be formulated as the local 

optimal solution of a two-group k-means clustering model 

[15]. Replacing the k-means clustering model by the k-

medians clustering model would produce a median based 

PCA model. The k-medians clustering model finds the 

medians of cluster centers rather than means in k-means 

clustering model. We prove that the proposed method 

converges. We also compare the proposed method with 

several state-of-the-art methods including 𝑙1 -PCA, RPCA 

and RPCA-OM. Experimental results show that the 

proposed k-medians clustering based PCA performs among 

the best in two applications, namely image reconstruction 

and dimension reduction. The organization of this paper 

goes as follows. We will first review the 𝑙1-PCA model and 

its equivalent k-means formulation. Then, the proposed k-

medians clustering based PCA model will be introduced. 

Finally, the robustness of the proposed method is verified 

via experiments. 

 

2. REVIEW OF 𝒍𝟏-PCA MODEL 

 

In this section, we review the l1-PCA model [12] and our 

proved result: 𝑙1-PCA model can be reformulated as a two-

group clustering model [16].  

Kwak reformulated the l1-PCA model using the 

dual space technique [12] and implicitly implies that the 

projection vectors are the mean of the signed data. Given the 

data 𝐗 = [𝐱1, 𝐱𝟐, … 𝐱n] and the centroid 𝛍, the l1-PCA model 
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minimizes the following objective function  

max
‖𝐮j‖

2
=1

∑ |(𝐱𝐢 − 𝛍)T𝐮𝐣|    

n

i=1

for j = 1,2 … D. (1) 

𝐮𝐣  is the jth principal component vector. Its dual space 

formulation is 

max
‖𝐮j‖

2
=1

∑|(𝐱i − 𝛍)T𝐮j|

n

i=1

= max
‖𝐮j‖

2
=1

max
si∈{−1,1}

∑ si(𝐱i − 𝛍)T𝐮j

n

i=1

. 

 (2) 

The local optimal solution of this model is then given by  

𝐮j =
∑ si(𝐱i − 𝛍)n

i=1

‖∑ si(𝐱i − 𝛍)n
i=1 ‖

=

1
n

∑ si(𝐱i − 𝛍)n
i=1

‖
1
n

∑ si(𝐱i − 𝛍)n
i=1 ‖

, (3) 

and si = sign((𝐱i − 𝛍)T𝐮j)    for i = 1,2, … n. (4) 

The numerator of the right hand side of Equation (4) is the 

mean of the signed data [𝐱1 − 𝛍, 𝐱𝟐 − 𝛍, … 𝐱n − 𝛍].  
The mean of the signed data implies that the 𝑙1 -PCA 

model is equivalent to a two-group clustering model [16]. 

That is, the 𝑙1 −PCA model can be formulated as: 

min
𝐜k

∑ ∑ I(𝐲i ∈ Ck)‖𝐲i − 𝐜k‖2

2n

i=1

2

k=1

, (5) 

where 𝐜1 = −𝐜2 , 𝐘 = [𝐲1, 𝐲2, … 𝐲2n] = [𝐱1 − 𝛍, … 𝐱n −
𝛍, −(𝐱1 − 𝛍), … −(𝐱n − 𝛍)] , I(𝐲i ∈ Ck)  is the indicator 

function and Ck = {𝐲i: ‖𝐲i − 𝐜k‖ ≤ ‖𝐲i − 𝐜j‖ for j = 1,2} . 

I(𝐲i ∈ Ck) = 1 if 𝐲i ∈ Ck and I(𝐲i ∈ Ck) = 0. The principal 

component is then obtained by normalizing 𝐜,  𝐮𝐣 =
𝐜1

‖𝒄1‖
.  

 

3. K-MEDIANS BASED PCA 

 

In this section, we use k-medians clustering model to 

develop a new PCA model. k-medians clustering model has 

been developed as a substitute of k-means clustering model 

to find cluster centers [17-20]. It has been well-tested that k-

medians clustering model is much more powerful than k-

means clustering model especially when outliers are present.  

The originality of k-medians clustering model is to 

replace the squared 𝑙2 norm in the k-means clustering model 

by 𝑙2 norm. This leads to the k-medians clustering model  

min
𝐜k

∑ ∑ I(𝐲i ∈ Ck)‖𝐲i − 𝐜k‖

2n

i=1

2

k=1

.  (6) 

This proposed model is to find the spatial median c of the 

signed data gi(𝐱i − 𝛍)  where 𝐜 = 𝐜1 = −𝐜2  and gi =
1 or − 1. This is justified as below.  

∑ ∑ I(𝐲i ∈ Ck)‖𝐲i − 𝐜k‖

2n

i=1

2

k=1

 

= ∑ I(𝐲i ∈ C1)‖𝐲i − 𝐜‖

2n

i=1

+ ∑ I(𝐲i ∈ C2)‖𝐲i + 𝐜‖

2n

i=1

 

= ∑‖s𝑖𝐲i − 𝐜‖

2n

i=1

= 2 ∑‖g𝑖(𝐱i − 𝛍) − 𝐜‖

n

i=1

. 

where si = 1 or − 1 . The second equality holds because 

𝐲i = 𝐲𝑛+𝑖. The third equality holds because  gi = 1 or − 1 

and 𝐘 is the signed data 𝐗.  In robust statistics, the above 

model is to find the spatial median of g𝑖(𝐱i − 𝛍) [5]. It has 

been proved that this spatial median model is robust to the 

presence of outliers and it has 50% breakdown point 

property [21,22]. That is, the cluster centers would not be 

dragged far away from the majority even if half of the data 

are corrupted. This spatial median model has an implicit 

meaning that 𝐜 is the “closest” coordinate vector to all data 

points (𝐱i − 𝛍) flipping to same half-plane. This is further 

illustrated via Figure 1. 10 two-dimensional random points 

with centroid 0 are generated. They are shown in Figure 1(a) 

The signed data points together with the spatial median 

(marked as red *) are shown in Figure 1(b).  The sign 

function gi is to flip all data points to the same half-plane. 

The spatial median is the “closest” coordinate vector to all 

these signed data points in the same half-plane. Projecting 

the data onto the direction 𝐜 means projecting all data points 

onto the line, which is always “closest” to all data points. 

This property allows the projected data “looks like” the 

original data. In image reconstruction and dimensionality 

reduction applications, this feature allows the use of a 

smaller number of dimensions to represent the whole data.  

  
(a) Original Data (b) Signed data with 

spatial median 

Figure 1. Illustration of the proposed idea. 

To regularize the origin of the 𝑙2 norm so that it is 

differentiable, we modify the proposed model as  

min
𝐜k

∑ ∑ I(𝐲i ∈ Ck)‖𝐲i − 𝐜k‖ϵ

2n

i=1

2

k=1

 , (7) 

where ‖𝐱‖ϵ = √ϵ + ||𝐱||
2

. ϵ  is served as a regularization 

parameter smoothing the 𝑙2  norm function. In all our 

experiments, ϵ = 10−4. Alterative updating scheme is used 

to find the local optimal solution for the cluster centers 𝐜k. 

By taking the first derivative of this equation, the cluster 

center must satisfy the following equation 

∑ I(𝐲i ∈ Ck)
𝐜k − 𝐲i

‖𝐜k − 𝐲i‖ϵ

2n

i=1

= 0  for k = 1,2. (8) 

 This leads to the following update equation 

𝐜k
t =

∑ I(𝐲i ∈ Ck
t−1)

𝐲i

‖𝐜k
t−1 − 𝐲i‖ϵ

2n
i=1

∑ I(𝐲i ∈ Ck
t−1)

1

‖𝐜k
t−1 − 𝐲i‖ϵ

2n
i=1

   

for k = 1,2. 

(9) 
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The principal component can then be obtained by the 

normalization 𝐮 =
𝐜1

‖𝐜1‖
. Later, we will show that 𝐜1 =

−𝐜2upon convergence of the proposed algorithm. 

Input: Centralized Data matrix 𝐗𝐜 ∈ Rd×n, a small positive 

value τ and an initial guess 𝐂 =  [𝐜1
𝑇  −𝐜1

𝑇]𝑇. 

Output: An unit vector 𝐮 ∈ Rd×1  
1. Construct a new data matrix 

𝐘 = [𝐱1
𝑐 , 𝐱𝟐

𝒄 , … 𝐱n
𝑐 , −𝐱1

𝑐 , −𝐱𝟐
𝒄 , … −𝐱n

𝑐 ]. 
2. Compute the two indicator functions I(𝐲i ∈ Ck) 

3. Update the cluster centers according to Equation (9) 

until convergence 

4. If the 𝑙2 norm difference of the cluster centers between 

two consecutive iterations is smaller than τ, output the 

result as 𝐮 = 𝐜1/‖𝐜1‖. Otherwise, go to Step 2. 

Table 1. Algorithm for producing a principal component. 

Table 1 shows the algorithm of the proposed method, which 

first principal component of the data. The initial guess 𝐜1 is 

set as λ𝐮, where 𝐮 is the singular vector corresponding to 

largest singular value λ of the centralized data. For the p-th 

principal component ( p ≥ 2 ), the data 𝐗c(p) =
[𝐱𝟏

𝐜 (p), 𝐱𝟐
𝐜 (p), … , 𝐱𝒏

𝐜 (p)] is projected to a subspace by the 

following equation 

𝐱𝑖
𝑐(𝑝) = (𝐈 − 𝐮(𝑝 − 1)𝐮(𝑝 − 1)𝑇)𝐱𝑖

𝑐(𝑝 − 1), (10) 

where 𝐈  is the identity matrix, 𝐮(p − 1)  is the (p − 1) -th 

principal component and 𝐱i
c(0) = 𝐱i

c . Then, the algorithm  

is applied to the data set 𝐗c(𝑝) . The output 𝐮(p)  of the 

algorithm is the p-th principal component and it is 

orthonormal to other principal components.  

The following lemma show that the equality 𝐜1 = −𝐜2 
must hold upon convergence of the algorithm.  
Lemma: Consider the following update equation 

𝐜k
t =

1

∑ I(𝐲i,k ∈ Ck
t−1)n

i=1

∑ I(𝐲i,k ∈ Ck
t−1)

𝐲i,k

‖𝐲𝑖,𝑘 − 𝐜𝑘
𝑡−1‖

n

i=1

,  

for k = 1,2 

 (11) 

where 𝐲i,k ∈ Ck
t−1, 𝐜k

t  is the cluster center 𝐜k and C𝑘
𝑡−1 is the 

set Ck at t − th iteration. If 𝐜1
t−1  = −𝐜2

t−1, 𝐜1
t = −𝐜2

t .  

Proof: 𝐘  is the union of 𝐗  and – 𝐗 . As 𝐜1
t−1 = −𝐜2

t−1 , 

C1
t−1 = − C2

t−1 . This is justified as below. 𝐲i,1  is closer to 

𝐜1
t−1 than  𝐜2

t−1 = −𝐜1
t−1. Then, −𝐲i,1 = 𝐲i,2 must be closer 

to 𝐜2
t−1  = −𝐜1

t−1  than 𝐜1
t−1 . This implies that  C2  is the 

negative of C1.  

𝐜1(t) =
1

∑ I(𝐲i,1 ∈ C1
t−1)n

i=1

∑ I(𝐲i,1 ∈ C1
t−1)

𝐲i,1

‖𝐲𝑖,1 − 𝐜1
𝑡−1‖

n

i=1

 

=
−1

∑ I(−𝐲i,1 ∈ −C1
t−1)n

i=1

∑ I(−𝐲i,1 ∈ −C1
t−1)

−𝐲i,1

‖−𝐲𝑖,1 + 𝐜1
𝑡−1‖

n

i=1

 

=
−1

∑ I(𝐲i,2 ∈ C2
t−1)n

i=1

∑ I(𝐲i,2 ∈ C2
t−1)

𝐲i,2

‖𝐲𝑖,2 − 𝐜2
𝑡−1‖

n

i=1

 

= −𝐜2(t).  
 (12) 
□  

As this lemma is true for all 𝑡 ≥ 1, the relationship 𝐜𝟏 =
−𝐜2  will stay true for any initial guess satisfying this 

condition until convergence.  The following theorem proves 

that the proposed clustering algorithm converges.  

Theorem: The proposed clustering algorithm converges. 

Proof: Define 

J(Ck, ck) = ∑ ∑ I(𝐲i ∈ Ck)‖𝐲i − 𝐜k‖ϵ

2n

i=1

2

k=1

. 

The function f(𝐜k) = ‖𝐲i − 𝐜k‖ϵ  is convex. So, 𝐜k  which 

satisfies Equation (8) is the global minimizer of J(Ck, ck). 

Thus, J(Ck
t−1, ck

t−1) ≥ J(Ck
t−1, ck

t ) . Obviously, J(Ck
t−1, ck

t ) ≥
J(Ck

t , ck
t ) . Thus, J(Ck

t−1, ck
t−1) ≥ J(Ck

t , ck
t ) . The objective 

function is bounded below. The method converges. □  
 

6. EXPERIMENTAL RESULTS 

 

In this section, we verify the robustness of the proposed 

method and compare its performance with the original PCA 

(Orig-PCA) and three state-of-the-art PCAs: 𝑙1-PCA, RPCA 

[13] and RPCA − OM  [14] in two different applications: 

image reconstruction and dimension reduction. We 

implemented the 𝑙1 -PCA method while the programming 

codes of the other two methods are downloaded from the 

websites [23,24]. We used the default settings of the 

downloaded codes. As RPCA-OM is a relatively time 

consuming method, we only consider the projection onto 14 

different dimensions for experimental evaluations, which 

Nie et. al. used a similar strategy [14]. These dimensions are 

5, 10, …65, 70. However, even under this setting, RPCA-

OM can take over an hour to obtain the 14 projection 

matrices. The stopping criterion of the 𝑙1-PCA method and 

the proposed method was set if the difference between 

norms of projection matrix U in consecutive iterations was 

less than 10−4 . The data mean μ  of the 𝑙1 -PCA and 

proposed method was set as the spatial median of the input 

data X. The 𝑙1-PCA used the singular vector corresponding 

to largest singular value of the data as the initial guess. All 

the methods were tested under the Matlab R2010b. Intel®  

Core ™ i5-3450 CPU @3.10GHz 3.10GHz 8.00 GB 64 bit 

Windows 8.1. 

Four publicly available datasets were selected for 

performance evaluation. The basic information of these four 

datasets are summarized in the following table.  

Database Name Dimensions Number of 
samples 

JAFFE  91x76 213 
Yale Face 64×64 165 
Umist 79x65 575 
TDT2 Document 

Database 
500 2000 

Table 2. Basic information of the selected databases.  

 

A. Face Reconstruction 

The average reconstruction error is defined by the averaged 
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distance between an original unoccluded image and the 

reconstructed image as below: 

err(m) =
1

n
∑ ‖(𝐱i

orig
− 𝛍)) − ∑ 𝐮j𝐮j

T(𝐱i − 𝛍)

m

j=1

‖

n

i=1

, (13) 

where 𝛍 is the centroid, 𝐱i
orig

 and 𝐱𝑖 are the original and the 

corresponding occluded image respectively and m is the 

number of principal components. The range of m is from 1 

to 70.  We simulate the outliers as below: 

(1) Corrupting Image as outliers: we randomly corrupted 

images by randomly blocking part of the images by 30 × 30 

blocks, which are black and white dots.  

(2) Adding dummy images as outliers: We added dummy 

images to the image databases. The dummy images are 

images from other databases or images with purely black 

and white dots. 

Figure 2 shows the reconstruction errors of different PCA 

methods. When the number of principal components is 

greater than 30, the difference among different methods 

becomes significant and the proposed method and RPCA 

perform better than other methods and achieve the smallest 

average reconstruction errors. In the Yale face database, the 

proposed method apparently performs better than the second 

best method - RPCA.  

 

B. Dimension Reduction 

The dimensions of all samples are reduced using PCA 

methods and classifications were performed in the reduced 

subspace [25]. Prototype P for each class and the probe T 

are projected onto U. The class is found to minimize the 

distance ϵ = ||𝐔(𝐓 − 𝐏)||.  
(1) Face Databases (JAFFE, Yale Face and Umist): We 

randomly selected two images from each class for testing 

and the rest were used for training. This is repeated five 

times. 60 dummy images were added to all databases as 

outliers. The dummy images are images from other 

databases or images with purely black and white dots. 

(2) TDT2 Database:  We selected the top 10 categories for 

our experimental evaluation. Each document is represented 

as a normalized term-frequency vector, with top 200 words 

selected according to mutual information. We randomly 

selected 500 documents for training and the rest were used 

for testing. This is repeated 20 times.  

For the classification rates of each PCA methods, we use 

the area under curves (AUC) and the maximum 

classification rates as experimental evaluations. They are 

shown in Table. AUC refers to the overall classification rate 

of the PCA method. A large AUC implies a better 

performance. The best performance is in bold face type. 

Apparently, the proposed method performed the best in 

terms of AUC in all face databases (JAFFE, Yale Face and 

Umist). This implies that the projection obtained by the 

proposed PCA often gives better classification results. For 

the TDT2 database, the maximum classification rate of the 

proposed method is the best, which is almost 1% better than 

the second best method RPCA − OM.  

7. CONCLUSIONS 

 

In this work, we proposed a new PCA method based on k-

medians clustering model. Its essential idea is to project the 

input data matrix in the sense of spatial median. We have 

proved that the proposed two group k-medians clustering 

model converges. We compared the performance of the 

proposed method with several state-of-the-arts methods in 

two different applications, namely, image reconstruction and 

dimension reduction. Experimental results show that the 

proposed method performed among the best in many cases. 

 

  

Jaffe (40 Corrupted Images) 
Jaffe (40 Corrupted + 59 

Dummy Images) 

  
Yale Face (30 Corrupted 

Images) 

Yale Face (30 Corrupted + 

75 Dummy Images) 

Figure 2. Average reconstruction errors of different PCA 

methods. 

 

 Orig-
PCA 

𝑙1

− 𝑃𝐶𝐴 
RPCA RPCA

− OM 
L2-
norm 

Yale 
Face 

AUC 60.306
7 

60.463
3 

60.306
7 

60.416
7 

60.850
0 

Max 0.9267 0.9333 0.9267 0.9333 0.9267 

Jaffe AUC 66.500
0 

66.820
0 

66.500
0 

66.315
0 

67.040
0 

Max 0.9800 0.9900 0.9800 0.9900 0.9900 

Umis
t 

AUC 67.670
0 

67.630
0 

67.670
0 

66.955
0 

67.835
0 

Max 1 1 1 1 1 

TDT AUC 63.946
8 

64.082
8 

40.193
3 

63.725
3 

63.816
8 

Max 0.9539 0.9607 0.6371 0.9567 0.9641 

Table 3. Area under the curves (AUCs) and maximum 

recognition rates of different PCA methods.  
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