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Definition and extraction of local features play a very
important role in image retrieval (IR), pattern recognition and
computer vision. Fast growth of technology today calls for lo-
cal features to be as compact as possible toward real-time and
limited bandwidth applications. In this paper, we study the
problem of representing images in a compact way to achieve
low bit-rate transmission while maintaining good perfor-
mance. To be more specific, we propose a novel compact de-
scriptor, dominant SIFT, which only uses 48 bits to describe
local features. Importantly, our descriptor is training-free,
vocabulary-free and suitable for real-time and mobile appli-
cations. We show the effectiveness of the proposed compact
descriptor in image retrieval.

Index Terms— Local feature, descriptor, image retrieval.

1. INTRODUCTION

If an image is worth more than one thousand words, local
features can be seen as the key helping us to understand these
words. Undoubtedly, local features have an irreplaceable role
in image processing from image retrieval, object recognition
to many other applications [14]. Many local features were
proposed to be faster, more distinctive and robust under many
different variations (e.g. scale, illumination, etc.). Some pop-
ular and successful local features developed during the recent
decade are Scale Invariant Feature Transform (SIFT) [21],
Principal Component Analysis (PCA)-SIFT [18], Speeded Up
Robust Features (SURF) [7] and Histogram of Oriented Gra-
dients (HOG) [12].

With the fast growth of technology today, taking and shar-
ing images become easier than ever. Traditional local features
have limitations in mobile and real-time applications because
of their large size (e.g. 128 bytes for a SIFT feature) [6, 15].
Recently, binary features, such as Binary Robust Independent
Elementary Features (BRIEF) [8], Binary Robust Invariant
Scalable Keypoints (BRISK) [20] and Fast Retina Keypoint
(FREAK) [5], are proposed to represent the local feature in a
more distinctive way. However, these features are still large in
size (e.g. ≥ 16 bytes per feature) while some low bit-rate im-
age retrieval applications aim to a much smaller bit-rate (e.g.
≤ 100 bits per feature) [10, 17].

To achieve a more compact descriptor, hashing, vector
quantization (VQ) and transform coding (TC) are also con-

sidered in [9]. Hashing is an effective way to represent the
local feature by using a few bits [16], but it depends a lot
on its hash functions. VQ technique represents each local
feature by a code-word of a pre-trained vocabulary [23], but
the large size of vocabulary becomes a problem for devices
having small memory [17]. TC framework maps the local
feature from original feature space into the transform space
using PCA technique which produces a small reconstruction
error when reducing feature dimensions [17]. However, this
method depends on the data used for learning the transform
matrix and the matching performance drops sharply as shown
in our experiment (Section 4.3) when the number of dimen-
sions is less than 10.

To deal with the real-time and mobile applications, we
propose a novel compact descriptor called Dominant SIFT,
which is based on a desired property of SIFT’s dominant ori-
entations. Our proposed descriptor only uses 6 bytes to rep-
resent one local feature while preserving a very competitive
retrieval performance when comparing to the state-of-the-art
vocabulary-free local feature compression methods. Unlike
other methods [17, 23], our training-free and vocabulary-free
proposed method can be implemented in small memory de-
vices. Section 2 will present related works to our research.
Our methodology and experiments will be given in Section 3
and Section 4 respectively. The last section is our conclusion.

Fig. 1. a. SIFT features of Lena image. The circle and its
size correspond to the keypoint and its scale. b. One SIFT
descriptor: each row is one 8-bin sub-histogram. Dominant
bins of each sub-histogram are underlined.
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Fig. 2. The histogram of ratio between the maximum consec-
utive sum-n and the sum of all bins of the sub-histogram in
four cases: a. n = 1, b. n = 2, c. n = 3 and d. n = 4.

2. RELATED WORK

2.1. Review of SIFT Algorithm

The SIFT feature introduced in [21] by David Lowe includes
two main parts, which are keypoint detector and SIFT de-
scriptor. The keypoint detector scans the image’s interest
points. Firstly, an image is applied with Gaussian filter of
different scales and then re-sized to form a Gaussian scale-
space. Neighboring images with the same resolution in this
scale-space are subtracted to get the Difference-of-Gaussian
(DoG) pyramid. The keypoint is taken if and only if it is a lo-
cal extremum in the DoG pyramid. The keypoint localization
is the last step applied to get the most stable keypoints.

David Lowe also proposed to represent keypoints by SIFT
descriptors [21]. A local patch centering at the keypoint after
being rotated to align with its dominant orientation is sepa-
rated into 16 4-pixel-by-4-pixel blocks. Gradients for 16 pix-
els in each block are quantized into 8-bin sub-histogram. Af-
terward, all 16 8-bin sub-histograms are put together to form
the final 128-dimension SIFT descriptor. Fig. 1 illustrates
the SIFT descriptor and SIFT local features detected in the
famous Lena image.

2.2. PCA-SIFT and Reduced SIFT:

Yan Ke and Rahul Sukthankar [18] proposed to use the PCA
technique to concatenate gradients into a new descriptor
called PCA-SIFT. Each 41-pixel-by-41-pixel image patch
centering at each keypoint is extracted and rotated to line
up with its dominant orientation. Gradient values in the x-
direction and the y-direction for all pixels in the image patch
are calculated to form a 2x39x39 = 3042-dimension vector.
A pre-trained eigenspace is used to reduce the dimension

of this vector to 32 [18]. By only keeping top dimensions
which correspond to the largest eigenvalues, they can achieve
PCA-SIFT descriptors as compact as they want.

The dimension of SIFT vector can be directly reduced by
using PCA transform. Similarly to PCA-SIFT, a PCA trans-
form matrix is pre-learned from an image database. At mo-
bile devices, SIFT features extracted from query images are
applied with PCA transform to achieve a more compact de-
scriptor. This new compact descriptor is called as Reduced
SIFT [24]. In this paper, PCA-SIFT and Reduced SIFT will
be used for comparing our proposed descriptor not only be-
cause they are popular in low bit-rate image retrieval applica-
tions [17,19], but also because they used the same vocabulary-
free compression methods as our proposal.

3. METHODOLOGY

3.1. Dominant Gradients Based SIFT Compression

As we mentioned in Section 2, the SIFT descriptors are
formed from 16 sub-histograms corresponding to 16 4-pixel-
by-4-pixel blocks. Sixteen gradients in each block are quan-
tized into 8 bins of the sub-histogram. Undoubtedly, bins in
the same sub-histogram have a stronger correlation than bins
in different sub-histograms of a SIFT descriptor. More im-
portantly, we realize that the values of a sub-histogram often
concentrate on two or three consecutive bins. For example,
dominant bins (underlined) of a SIFT feature in Fig. 1 are
often adjacent to each other after a circular shift.

We form a simple statistical experiment to check our as-
sumption. For each SIFT vector (aj)j∈Z∩[0,15] where aj =

{aji ∈ Z∩ [0, 256)|i ∈ Z∩ [0, 7]} is a 8-bin sub-histogram, let
CSn(a

j , i) be the consecutive sum-n at the position i which
is defined as:

CSn(a
j , i) :=

i+n−1∑
k=i

ajk

where ajm = ajm(mod 8)∀m ∈ Z ∩ (8,∞) and n ∈
{1, 2, 3, 4}. Let MCSn(a

j) be the maximum of CSn(aj , i)
where i ∈ Z ∩ [0, 7]. In our statistical test, we plot the his-
togram of the ratio MCSn(a

j)/(
∑7

i=0 a
j
i ) for every SIFT

feature’s sub-histograms extracted from the Lena image.
As shown in Fig. 2 as an example to illustrate our observa-

tion, the histogram highly biases towards the right-hand side
of the graph and reaches its peak at 1 in cases n ∈ {2, 3, 4}.
This result confirms our assumption that several consecutive
bins dominantly contribute to the sub-histogram. The ques-
tion is how to use this property to represent the SIFT de-
scriptor. For achieving a more compact descriptor, we pro-
pose to represent the sub-histogram based on the position of
the maximum consecutive sum-n. Only 8 positions are avail-
able for the consecutive sum-n, so we only use 3 bits and 48
bits to represent each sub-histogram and the whole SIFT de-
scriptor respectively. We name our new compact descriptor
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as Dominant SIFT. Algorithm 1 describes our descriptor al-
gorithm, which is 20 times, 6 times and almost 3 times more
compact than the original SIFT [21], PCA-SIFT [18] and the
well-known binary features in [5, 8, 20], respectively.

Algorithm 1 Dominant SIFT descriptor generation.

1. For each SIFT feature, separating it into 16 sub-vectors:
aj = [aj0, . . . ., a

j
7]

T, j ∈ Z ∩ [0, 15].

2. Find the position of the maximum consecutive sum-n
of aj : pj = argmaxi∈Z∩[0,7] CSn(a

j , i). Encode the
aj by pj ∈ {0, 1}3 in gray code.

3. Encode the SIFT feature by 48 bits: (pj)j∈Z∩[0,15].

3.2. Matching Criterion for Image Retrieval

We use the Hamming distance and ratio test for finding the
best match for each local feature. Our proposed descriptor
can be seen as a compact way to encode the discriminative
information of SIFT descriptor. Therefore, using the ratio test
to find the best match (as in SIFT matching criterion [21]) is
more reasonable than using the threshold test. Algorithm 2
describes our matching criterion.

Algorithm 2 Dominant SIFT descriptor matching criterion.

1. For each query Dominant SIFT feature q, find its near-
est neighbor feature a and its second nearest neighbor
feature b from the reference image.

2. a is the match of q if and only if: Hd(q, a) < δ ·
Hd(q, b), where Hd is the Hamming distance metric
and δ is the ratio test threshold.

4. EXPERIMENTS AND RESULTS

4.1. Experiment Setup

Fig. 3. Descriptor evaluation dataset.

In the two experiments conducted, the first is to test our pro-
posed descriptor’s matching ability in comparison with the
original SIFT [21] and Reduced SIFT [24] (6-dimension) by
following the published descriptor evaluation framework in
[22]. The second is to compare the image retrieval ability
of our proposed descriptor with other compact descriptors
in [18, 21, 24] to highlight its promising matching ability at a
very low bit-rate using the published Stanford Mobile Visual
Search (MVS) dataset [11]. All necessary reference codes are
taken from [1, 3, 4].

4.2. Experiment 1: Descriptor Evaluation
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Fig. 4. Descriptor evaluation for original SIFT, Reduced SIFT
(6 dimensions) and Dominant SIFT (6 bytes, n = 2). The 1-
precision and recall curves for each descriptor are plotted for
feature matching between image 1 and 4 in Fig. 3.

Mikolajczyk and Schmid proposed the method to test match-
ing ability of descriptor in [22]. As illustrated in Fig. 3, the
image database includes 8 categories with variations in: view-
point (Graffiti and Wall), zom and rotation (Bark and Boat),
blur (Bikes and Trees), illumination (Leuven) and JPEG com-
pression quality (UBC). The Harris Affine detector [22] is
used in this experiment. Each category includes four pairs
of images with corresponding homography transform matri-
ces to calculate the ground truth for the correct matching fea-
tures. To evaluate descriptors, we plot recall vs. 1-precision
curve by changing ratio test thresholds.
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Table 1. Image retrieval mean average precision on Stanford MVS dataset [11] with best 2 in bold.

Descriptor/Database Book Cover CD Cover DVD Cover Business Card Museum Painting Printing Video Frame Average

SIFT [21] 0.9406 0.8400 0.8500 0.4500 0.8242 0.4200 0.8700 0.7421
Reduced SIFT-16 [24] 0.98317 0.6300 0.5900 0.3100 0.7692 0.3700 0.8200 0.6389

Reduced SIFT-10 [24] 0.6337 0.4600 0.4000 0.1500 0.6703 0.2900 0.7700 0.4820

PCASIFT-32 [18] 0.7921 0.7800 0.4800 0.3600 0.7912 0.3300 0.8600 0.6276

PCASIFT-16 [18] 0.7426 0.5600 0.2900 0.2400 0.7413 0.2800 0.8200 0.5248

PCASIFT-10 [18] 0.6040 0.3700 0.1800 0.1000 0.6154 0.1600 0.7400 0.3956

Our proposal 0.8812 0.7300 0.6800 0.5200 0.7912 0.4300 0.8200 0.6932

This experiment aims to show the ability of our proposed
descriptor in very low bit-rates. The PCA transform frame-
work is often used as a vocabulary-free to achieve a low bit-
rate for SIFT feature [9, 17]. However, when the dimension
is reduced to small value (e.g. 6 dimensions), the perfor-
mance will drop rapidly. As shown in Fig. 4, gaps in feature
matching performance between original SIFT and Reduced
SIFT (6-dimension) by PCA transform are very large. Our
proposed method (6 bytes), which has the same size as 6-
dimension Reduced SIFT (6 bytes in integer representation),
can outperform the Reduced SIFT in most of cases. In the
worst case, category UBC which is with JPEG compression,
our proposal can still achieve a very good error rate (0.3) at a
high recall rate (0.6).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 precision

re
c
a
ll

a. Tree 1|4

n = 1

n = 2

n = 3

n = 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 precision

re
c
a
ll

b. Bike 1|4

n = 1

n = 2

n = 3

n = 4

Fig. 5. Descriptor evaluation for Dominant SIFT with differ-
ent values of n (n ∈ {1, 2, 3, 4}). The recall vs. 1-precision
curves for each descriptor are plotted for feature matching be-
tween image 1 and image 4 in category: a. Tree and b. Bike.

We also conduct another experiment to evaluate our pro-
posed descriptors with different values of n. Fig. 5 shows
that the Dominant SIFT in the case n = 2 outperforms in
other cases (n ∈ {1, 3, 4}). We choose using dominant SIFT
n = 2 in compassion with SIFT and Reduced SIFT.

4.3. Experiment 2: Pairwise Matching Based IR

We also verify our descriptor ability in image retrieval. The
original SIFT [21], PCA-SIFT [18] (32, 16 and 10 dimen-
sions) and Reduced SIFT [24] (16 and 10 dimensions) are
used as baselines to compare with our proposal. The pub-
lished Stanford MVS dataset [11] which includes seven im-
age categories (CD cover, DVD cover, book cover, business

card, museum painting, printing and video frame) is used in
this experiment. Each category has around 100 reference im-
ages blended with around 400 distractor images taken from
Flickr1M database [2]. In a real large-scale image retrieval
system, the global feature is used to find a short list of best
matching images (around 500 images), and then the local fea-
ture is used to re-rank the short list [13]. The query images
are taken from mobile devices (iPhone, android phone, etc.)
and correctly matched with only one image in reference im-
age set (1 vs. 500 test). The ratio test threshold is chosen of
0.8 as reported in [21] due to PCA-SIFT, Reduced SIFT as
well as our proposal are all SIFT-based descriptors. For each
query image, the reference image having the largest number
of matching features is concluded as its match.

Table 1 shows the retrieval results for all descriptors taken
part in the experiment. Our descriptor brings a very competi-
tive retrieval results in comparing to other SIFT compression
methods even when our proposal has a smaller size (2 and 1.6
times less) than other compressed descriptors. In most of the
cases, our proposal can get the second best result and outper-
forms PCA-SIFT (16 dimensions) and reduced-SIFT (16 di-
mensions) easily. Clearly, our dominant SIFT can work very
well at a very low bit-rate, 48 bits per each local feature.

5. CONCLUSIONS

We have proposed a compact (48 bits) Dominant SIFT de-
scriptor by representing dominant orientations of the SIFT
descriptor. Our experiment result shows that our training-
free and vocabulary-free descriptor is 20 times and 6 times
more compact than the original SIFT and the PCA-SIFT with
a competitive performance in comparison with other latest
vocabulary-free SIFT compression methods, when image re-
trieval is demonstrated as an example of applications.
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