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ABSTRACT

Many successful systems for scene recognition transform
low-level descriptors into complex representations. This
process consists of the two steps: 1) feature coding, which
performs a pointwise transformation of the descriptors into
a representation adapted to the task, and 2) image pooling,
which summarizes the coded features. Even though these
two steps have been paid so much attention, but there are
still some problems in combining scene semantic with local
features. The goal of this paper is threefold: to address the
problem by modifying the traditional bag-of-features (BoF)
framework; to show how to achieve the best performance by
learning a semi-supervised discriminative dictionary; and to
provide theoretical and empirical insight into the remarkable
performance. By teasing apart components shared by modern
scene categorization pipeline, our approach aims to facilitate
the design of better scene recognition architectures.

Index Terms— Dictionary learning, Scene categoriza-
tion, Incremental learning, Bag-of-features (BoF), Discrimi-
native dictionary

1. INTRODUCTION

Scene categorization is an important problem for computer
vision and multimedia analysis. Content based image/video
retrieval could benefit from the semantic knowledge [1, 2].
Bag-of-features (BoF) model [3] has been extremely practical
for addressing this problem, which is inspired by the Bag-of-
Words (BoW) model used in text categorization. However in
text domain, the word is explicitly expressed, there is no given
vocabulary for the visual categorization problem. And it has
to be learned from a random sampling set of local features like
SIFT [4]. The pipeline of BoF contains four main phases: 1)
extracting local visual features, 2) learning a representative
dictionary to code the local features, 3) image representation
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generating and 4) classifier training and testing. The phases 2)
and 3) are named as Coding and Pooling in modern researches
respectively [5, 6, 7]. The accuracy of BoF can be improved
by extracting robust features [8, 9], learning a more represen-
tative dictionary to code the local features or giving a more
generalized image representation. [10] set a baseline for eval-
uating the recognition approaches employing this pipeline. It
proposed a “spatial pyramid matching (SPM)” representation
for the image of an orderless BoF. The method partitions an
image into 2l × 2l segments in different scales l = 0, 1, 2,
then computes the BoF histogram of these 21(1 + 4 + 16)
segments, and finally concatenates all the histograms to form
a vector representation of the image. In the case where only
the scale l = 0 is considered, SPM reduces to BoF. A remark-
able success is accomplished by involving the pyramid kernel
[11]. [5, 6] developed an extension of the SPM method by
generalizing vector quantization to sparse coding [12]. And
[13] presented a variation of BoF method in combination with
soft assignment BoF histogram based on the theory of kernel
density estimation.

These methods in BoF pipeline perform well in general.
However, there are still some weaknesses in current approach-
es. Firstly, there are massive scene categories in real world.
When a new category is added to the system, the dictionary
should be re-learning again on whole data, which will carry
heavy computation cost [14]. Secondly, the visual features
clustering and scene classification are disconnected. So we
would implicitly make the assumption that all visual words
have the same discriminative power. Then the representation
has no capability of capturing the aspects of the data that are
most useful for classification. And thirdly, the dictionary was
shared by all categories and its size was manually fixed, so
the discriminative power would depend heavily on the right
setting of this parameter.

In this paper, we propose a framework for automatic
learning a discriminative dictionary to address the afore-
mentioned problems. This framework should be adapted
for incremental learning, so when an additional category
is considered, the system can still distinguish it with low-

1329978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



Fig. 1. Toy example of discriminative visual vocabulary
learning. The images has four types of visual words, indicated
by circles, squares, diamonds and triangles. The circle word
exists in all categories, so it should be discarded. The word-
s represented by squares, diamonds and triangles are words
with great discriminative power.

er computational cost. The visual dictionary is trained in
a semi-supervised manner by combining the information of
cluster with labels of categories. Then we select a universal
and adapted dictionary for scene categorization task.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the related discriminative dictionary training
work and the basic idea of our proposed framework; Section
3 describes the theory behind our framework; In Section 4,
a novel training algorithm is employed to construct the dis-
criminative visual vocabulary; Section 5 shows experimental
results and corresponding analysis. Finally conclusions are
drawn in Section 6.

2. RELATED WORK AND PROPOSED
FRAMEWORK

There is semantic gap between the high level semantic labels
and low level local descriptors, so it is not easy to strengthen
the discriminative power of a system. In previous researches
the discriminative power is enhanced by means of following.
[15] learned a compact visual dictionary by pair-wise merging
of visual words from an initial large dictionary and described
the final visual words by GMMs. [16] proposed to generate
image signature based on a universal vocabulary which can
be adapted to class-specific data. [14] designed a new im-
age signature by using generative models for classification.
The idea behind [17] and [18] is a little similar to ours. [17]
proposed a label consistent K-SVD (LC-KSVD) algorithm to
learn a discriminative dictionary for sparse coding and [18]
learning a weakly supervised visual dictionary by harnessing
the semantic labels of images or regions.

The idea to enhance the BoF discrimination is selecting
the “best visual word” into the dictionary, as illustrated by
Figure 1. Meanwhile we add a dictionary retraining step com-
pared to BoW in text domain, which could help to find an op-
timal center of the local features. The dimension of dictionary
can be reduced when some useless visual words are discard-
ed. It also leads to reduce the dimension of the final image

Fig. 2. Proposed framework

representation. Then the image signature will be generated
through SPM method. The pipeline is showed in Figure 2. To
evaluate the condition of discrimination, the framework will
select the best visual word into dictionary and automatic set it
to a appropriate size through small cycles which is shown by
the bold arrows.

Under the proposed framework, there are several advan-
tages: 1) In real world application, new categories can by
added to the system through adding some visual words adapt-
ed to that category just like BoW in text domain; 2) By rein-
forcing the discriminative power of traditional BoF pipeline
instead of abandoning it, the framework overcomes the BoF
weakness while keeping the outstanding features, then the
state-of-the-art SPM image representation is employed in the
framework; and 3) the dimension of image signature can be
set to an efficient one through the dictionary relearning step.

3. VISUAL VOCABULARY SELECTION

The semantic labels can not be connected to local features
directly. We need to gather the statistics information between
them, then use following techniques to select the appropriate
features.

3.1. Information gain

Let C represents the label set for the image categories, word
is one item from the dictionary. The value set for w is W .
Then the system entropy can be computed as follows,

H(C) = −
∑
c∈C

P (c) · logP (c) (1)

The condition entropy of word for system is:

H(C|W ) = −
∑
w∈W

P (w) ·H(C|W = w)

= −
∑
w∈W

P (w)
∑
c∈C

P (c|w) · logP (c|w)
(2)
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Table 1. χ2 test
label l = ci label l 6= ci Row total

word in a b a+ b
word not in c d c+ d

Column total a+ c b+ d n

Information gained from word can be formulated as:

IG(word) = H(C)−H(C|W ) (3)

The most discriminative words for the system can be ex-
ploited through sorting the IG for all words. But there is still
weakness by employing the Shannons information theory to
select features, the word selected is not applicable to every
category. While chi-square test is another statistics technique
that can overcome it.

3.2. Chi-square test

The chi-square test is used to determine whether there is a
significant difference between the expected frequencies and
the observed frequencies in categories. When it is applied to
test of independence, an “observation” consists of the values
of two outcomes and the null hypothesis is that the occurrence
of these outcomes is statistically independent. Let ci be one
of the semantic categories, l is the label for image and word
is one vocabulary in the visual dictionary V . Then the test is
applied to a 2× 2 contingency table as Table 1.

The original χ2 test statistics is given by:

χ2 =
n∑

i=1

(Oi−Ei)
2

Ei
(4)

In our case, it is used to test of independence between one
high-level semantic category c and low-level visual descriptor
word, the null and alternative hypotheses are:

H0 : word is independent of ci
H1 : word is depend on ci
When i = 1, E1 means the expected times for word to

show in label ci images:

E1 = (a+ c) (a+b)
n

(5)

The i = 1 variable in Equation 4 can be expressed as
follow:

D1 = (a−E1)
2

E1
(6)

Then χ2 can be formulated as:

χ2(ci, word) =
n(ad−bc)2

(a+c)(a+b)(b+d)(c+d)
(7)

When the χ2 value between ci and word is larger than the
threshold (ith value of the category), we will reject the null
hypothesis H0 and accept the alternative hypothesis H1. By
computing all the χ2 value between one category and all visu-
al vocabulary, we can select the best visual word that adapted
to this category.

4. DISCRIMINATIVE DICTIONARY LEARNING

In all the above discussion, we have assumed that the dictio-
nary is given first. A simple way to generate the dictionary is
to use clustering based method such as K-Means algorithm.
According to our experimental results in Section 5, the dic-
tionary generated by K-Means can satisfy our requirement.
Then we use the proposed small cycle in Figure 2 to relearn-
ing the dictionary and the condition in Section 3 to select the
universal and adapted vocabularies. When a new category is
added to system, the condition in Subsection 3.2 is used to
select the adapted visual vocabulary for it. This enables our
approach to gain the ability of incremental learning. To elab-
orate, the dictionary trained by K-Means clustering is used
to initialize V . Then the IG and χ2 test is computed on all
word ∈ V and ci ∈ C. This step selects the discriminative
words from V . Then the V is retrained on sampling descrip-
tors F and get an optimal V . The above process is illustrated
in Algorithm 1.

Algorithm 1 Discriminative dictionary learning
Input: X ∈ RK×N , L ∈ R1×N , Vinit ∈ RD×K , F ∈

RD×M . F : sampling local features
Output: Vopt ∈ RD×Kopt

1: IG← 1×K zero vector
2: C ← unique(L) . C : number of classes
3: CS ← K × C zero matrix
4: for all word ∈ Vinit do
5: IG(word)← H(L)−H(L|W )
6: for each ci ∈ C do
7: CS(word, ci) = χ2(c, word)
8: end for
9: end for

10: Iuni ← Find(IG > 0.1)
11: for each ci ∈ C do
12: Sidx ← Find(CS(:, ci) > threshold(ith)
13: Iadapt ← [Iadapt;Sidx]
14: end for
15: idx← unique([Iadapt; Iuni])
16: Vopt ← Vinit(:, idx) . Vopt : selected words
17: Vopt ←CLUSTER(F, Vopt) . call clustering function
18: return Vopt
19:
20: procedure CLUSTER(F, Vopt) . retraining Vopt
21: Clustering features F with initial Vopt
22: end procedure

5. EXPERIMENT RESULTS

In this section, we report results on two widely used dataset-
s: 15 Scenes [19] and Indoor Scenes [20]. We performed
all processing in grayscale, even when color images are avail-
able. All experiments were repeated eight times with different
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Table 2. Comparison of accuracy with K visual words
Dictionary Size 50 100 200 400

Lazebnik[10] 74.5(0.5) 75.4(0.5) 79.1(0.3) 81.4(0.5)
Van Gemert[13] 62.5(0.5) 67.5(0.4) 71.2(0.3) 72.5(0.2)

Zhen[14] 70.5(0.5) 71.4(0.4) 72.5(0.3) 73.0(0.3)

OURS 75.0(0.5) 77.2(0.4) 80.0(0.3) 82.5(0.5)

Fig. 3. Comparison for 15 Scenes

randomly selected train and test images, then the mean and
standard deviation of per-class recognition rates were record-
ed for each run. The images were resized with maximum side
500 pixels. As for the image features, the image patches were
densely sampled from each image with step size 8 pixels and
side length 16 pixels, and SIFT descriptors were adopted with
grid size 4× 4 to form the final 128 dimensional feature vec-
tors. The features used for training dictionary were randomly
sampled from training images (10 images per category) and
the amount of them was about 100, 000. The initial dictionary
size was set to twice over the final one. K-Means clustering
was run to get the initial dictionary. Spatial pyramid matching
representation was embeded in the pooling step (the images
were split into three scales l = 0, 1, 2, each of which had
1, 4, 16 segments and the final histogram concatenated the 21
segments). One against all multi-class classification strategy
was adopted. VLFeat [21] and LIBSVM package [22] were
used.

The dictionary relearning step in this paper run with the
parameters as follows: threshold for information gain was set
to 0.1. Because of the changeful χ2 value, the tenth highest
χ2 values for per category were set as threshold for adapt-
ed vocabulary selecting. Unlike the BoW in text domain,
the visual words had many overlapping part between differ-
ent categories. So the size of adapted vocabulary was about
0.5 × ith × cnum for each loop. The times for running the
dictionary relearning and index reassignment loop is depend
on the initial value and final size of the visual dictionary. For
the initial final value pair (400, 200), the vocabulary selecting

Fig. 4. Indoor Scenes Performance

and index reassignment step run for 5 times to achieve it.
Figure 3 shows the comparison of the results from pro-

posed framework and three other methods: the state-of-the-
art spatial pyramid matching (KSPM) method [10], the code
word uncertainty (UNC) method [13] and the combining gen-
erative and discriminative model (GDM) method [14]. For a
fair comparison, we plot the graphs of recognition rate versus
dictionary size.

To prove the robustness of our framework, we also test it
on Indoor Scenes, compared with 6 other methods: ROI+Gist
[20], Object bank [23], CENTRIST [9], depth embedded
pooling [24], DPM [25] and RBow [26] method. As seen
in Figure 4, the proposed framework achieved competitive
42.31% recognition rate.

As shown in results, our approach outperforms several
other methods. That was caused by selecting the right words
into the dictionary. At first, the initial dictionary size is a large
one, then the visual vocabularies which bring a lot of informa-
tion were selected. With the dictionary relearning process run,
the dimension of the dictionary is reduced without decaying
the recognition rate. Meanwhile, the index reassignment step
tries to capture all the information with the discriminative vi-
sual vocabularies. These framework help to achieve optimal
performance under the same setting of dictionary size.

6. CONCLUSION

The proposed framework improves the discriminative power
of the traditional Bag-of-Features model. Through discarding
the useless vocabulary of the visual dictionary, the dimension
of the dictionary can be reduced without decreasing the sys-
tem accuracy. Meanwhile, the index reassignment step enable
the framework to get a dictionary that is best fit for the clas-
sification task. When a new category is added, low computa-
tional cost is needed by selecting a few visual vocabularies for
it. Future works may test our framework on a soft-assignment
mechanism like sparse coding.
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