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ABSTRACT

Dictionary learning algorithms have been successfully used in
both reconstructive and discriminative tasks, where the input
signal is represented by a linear combination of a few dictio-
nary atoms. While these methods are usually developed under
`1 sparsity constrain (prior) in the input domain, recent stud-
ies have demonstrated the advantages of sparse representation
using structured sparsity priors in the kernel domain. In this
paper, we propose a supervised dictionary learning algorithm
in the kernel domain for hyperspectral image classification. In
the proposed formulation, the dictionary and classifier are ob-
tained jointly for optimal classification performance. The su-
pervised formulation is task-driven and provides learned fea-
tures from the hyperspectral data that are well suited for the
classification task. Moreover, the proposed algorithm uses a
joint (`12) sparsity prior to enforce collaboration among the
neighboring pixels. The simulation results illustrate the effi-
ciency of the proposed dictionary learning algorithm.

Index Terms— Dictionary learning, Kernel methods, Hy-
perspectral image classification

1. INTRODUCTION

Hyperspectral Imagery (HSI) has increasingly become popu-
lar for the remote sensing applications such as target detec-
tion [1] and material identification [2]. Among several algo-
rithms used for HSI classification [3, 4, 5], it has been shown
that sparse representation classification (SRC) can achieve su-
perior results [6, 7]. For this purpose, a dictionary is usually
constructed by collecting all the training samples, i.e. labeled
pixels, and the underlying assumption is that the test pixel
can be approximated with a few dictionary atoms, i.e., test
pixel lies in a low-dimensional subspace formed by the train-
ing samples that have the same label as the test pixel. How-
ever, the sparse coefficients generated by SRC can become
unstable due to the high coherency of the dictionary atoms [8].
This situation can be alleviated by enforcing similarity in the
sparse codes of the neighboring pixels, which usually have
similar spectral features, by an appropriate structured sparsity
prior [9, 10]. In particular, the joint sparsity prior assumes
that the neighboring pixels lie in the same low-dimensional

subspace. It enforces collaboration among these pixels and
yields more stable sparse coefficients, which results in an im-
proved classification performance [11].

Recently, it has been shown that learning the dictionary,
rather than constructing it by using all the training sam-
ples, can significantly improve the performance of sparse
representation-based algorithms for both reconstructive [12]
and discriminative tasks [13]. Dictionary learning algorithms
can generally be categorized into two groups: unsupervised
and supervised methods. Unsupervised dictionary learning is
aimed at finding a dictionary that yields the minimum errors
for reconstruction tasks such as deniosing [14], while su-
pervised dictionary learning algorithms utilize the labels for
minimizing a misclassification cost [13]. It has recently been
shown that a task-driven formulation can achieve state-of-
the-art performance in several classification tasks by jointly
learning the dictionary and classifier [15].

Similar to other machine learning methods, kernelized
sparse representation algorithms which map the input into a
higher-dimensional feature space using kernel function can
result in significant performance improvements compared to
the linear counterpart [16, 17]. The rational is that when
the data from different classes are projected into the kernel
induced feature space, the classes become more separable
and samples from the same classes can typically cluster to-
gether in subspaces resulting in more discriminative sparse
codes. For this purpose, a few kernelized dictionary learning
algorithms have been proposed [18, 19]. In [18], an unsu-
pervised learning is proposed by kernelizing the well-known
K-SVD [20] algorithm for object recognition. In [19], a su-
pervised formulation has been proposed based on the Hilbert
Schmidt independence criterion to maximize the dependency
between the data and corresponding class labels. However,
for a classification task, the preference is to utilize the labeled
data to minimize a misclassification cost [15].

In this paper, a kernelized task-driven dictionary learning
algorithm is proposed in which a dictionary is trained to be
optimal for HSI classification. The proposed algorithm gen-
eralizes the task-driven formulation of [15] in two important
ways. First, it enforces correlation among the neighboring
pixels using the joint sparsity prior. Second, it generalizes the
algorithm by providing a kernelized formulation. The pro-
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posed dictionary learning is obtained by solving a bi-level op-
timization problem which shows that, while the underlining
joint sparse coding is non-smooth, the bi-level optimization
cost is differentiable. The simulation results demonstrate that
the proposed algorithm achieve state-of-the-art performance
for HSI classification tasks.

2. BACKGROUND

2.1. Dictionary learning

Dictionary learning has been widely used in various tasks
such as reconstruction, classification, and compressive sens-
ing [15, 21, 22]. Let X = [x1,x2, . . . ,xN ] ∈ Rn×N be the
collection of N (normalized) training HSI pixels where n is
the number of the spectral bands. In an unsupervised formu-
lation, the dictionary D ∈ Rn×d is usually obtained as the
minimizer of the following cost [23]

g (D) , Ex [lu (x,D)] , (1)

over the regularizing convex set D , {D ∈ Rn×d|‖dk‖`2 ≤
1,∀k = 1, . . . , d}, where dk is the kth column, or atom, in
the dictionary and the unsupervised loss lu is defined as

lu (x,D) , min
α∈Rd

‖x−Dα‖22 + λ1‖α‖1 + λ2‖α‖22, (2)

which is the optimal value of the sparse coding problem with
λ1 and λ2 being the regularizing parameters. It is assumed
that the data x is drawn from a finite probability distribution
p(x) which is usually unknown. A stationary point of the
optimization problem can be efficiently obtained by an online
optimization algorithm [23].

The trained dictionary can then be used to (sparsely) re-
construct the inputs and the reconstruction error is usually a
robust measure for classification tasks [24, 25]. Other use of
the trained dictionary is for feature learning where the sparse
code α?(x,D), obtained as a solution of (2), is used as input
feature for training a classifier in the classical expected risk
optimization framework [15]. However, it has been shown
that a more discriminative features can generally be obtained
by learning the dictionary and classifier jointly in the follow-
ing task-driven formulation [15]

min
D∈D,W∈W

Ey,x [lsu (y,W ,α?(x,D))] +
ν

2
‖W ‖2F , (3)

where y ∈ RC is a binary vector representing the ground
truth label of the input x for a C-class classification problem,
and lsu is a (supervised) convex loss function that measures
how well one can predict y given the feature α? and model
parameters W ∈ W , and ν is the regularizing parameter. In
this paper, quadratic loss is used which is defined as

lsu(y,W ,α?) =
1

2
‖y −Wα?‖2`2 , (4)

andW = RC×d.

2.2. Kernelized sparse representation with structured
sparsity prior

Kernel methods are usually used to project the data set into a
higher dimensional feature space to make different classes to
become linearly separable. Let Φ : Rn → F be a mapping
from Rn to feature space F which can possibly be infinite-
dimensional. It is assumed that F is a Hilbert space which
allows the use of Mercer kernels to carry out the projection
implicitly. Mercer kernel k(x1,x2) : Rn × Rn → R is a
function defined as k(x1,x2) =< Φ(x1),Φ(x2) > where
<> is the inner product operator [26]. Among commonly
used kernel functions are the Gaussian kernel k(x1,x2) =

exp
(
−‖x1−x2‖2

σ

)
and polynomial kernel k(x1,x2) = (<

x1,x2 >)c, where σ and c are the kernel parameters.
The kernel sparse representation of the input feature Φ(x)

can then be obtained by solving [18]

min
α∈Rd

‖Φ(x)− Φ(D)α‖22 + λ1‖α‖1 + λ2‖α‖22,

where Φ(D) = [Φ(d1) . . .Φ(dN )] and dj are the columns of
D. Note that ‖Φ(x)−Φ(D)α‖22 = k(x,x)−2αT k(D,x)+
αT k(D,D)α and no explicit mapping into the feature space
is required to solve the optimization problem. As discussed
in previous section, the neighboring HSI pixels usually have
similar spectral features and more robust sparse codes can
be obtained if they are jointly reconstructed [11, 17]. Let
{x1, . . . ,xS} be the set of S neighboring pixels centered at
x1 which are denoted as {xs} in this paper. Joint sparsity en-
forces the neighboring pixels to be represented in the same
subspace and the optimal sparse coefficients A?({xs},D)
are obtained by solving following optimization problem

argmin
A∈Rd×S

1

2

S∑
s=1

‖Φ(xs)−Φ(D)αs‖22 +λ1‖A‖`12 +
λ2

2
‖A‖2F ,

(5)
where αs is the sparse code for pixel xs and ‖A‖12 =∑d
j=1 ‖aj→‖2 in which aj→’s are the rows ofA. The above

optimization problem encourages row sparsity in A? and
therefore the neighboring pixels are enforced to be jointly
reconstructed by the same sparse code pattern [11].

3. KERNELIZED TASK-DRIVEN DICTIONARY
LEARNING

This section extends the task-driven dictionary learning algo-
rithm by using joint sparsity prior, which enforces collabora-
tion among the neighboring HSI pixels. Moreover, we extend
the algorithm to the kernel domain which provides a general
framework for task-driven dictionary learning using arbitrary
kernel functions. With the same notations from previous sec-
tion, and without loss of generality, let the input signal con-
sist of S neighboring pixels {xs} centered at x1 and the label
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vector of the center pixel be y . We propose to obtain the dic-
tionaryD? and the model parameterW ? jointly in the kernel
space as the minimizer of the following optimization

min
D∈D,W∈W

E
[
lsu(y,W ,α?1({xs},D))

]
+
ν

2
‖W ‖2F , (6)

whereα?1 is the first column of the minimizerA?({xs,Ds})
of the optimization problem (5), which is the sparse code for
the center pixel, and lsu is defined in Eq. (4). It should be
noted that while lsu is chosen to be the quadratic loss for sim-
plicity, the formulation can be easily extended to any other
convex cost functions such as those used in [15]. The expec-
tation is taken with respect to the joint probability distribution
of the HSI inputs {xs} and label y.

The main difficulty in optimizing (6) is the nondifferen-
tiability ofA?({xs,Ds}). However, it can be shown that the
sparse coefficientsA? is differentiable almost everywhere. To
prove that, one can use the optimality condition ofA?

[
k(dj ,x

1) . . . k(dj ,x
S)
]
− k(dj ,D)A?

− λ2a
?
j→ = λ1

a?j→
‖a?j→‖`2

, if ‖a?j→‖`2 6= 0,

‖
[
k(dj ,x

1) . . . k(dj ,x
S)
]
− k(dj ,D)A?

− λ2a
?
j→‖`2 ≤ λ1, otherwise,

(7)

which is obtained by subgradient of the cost function. For the
solutionA?, the active set is defined to be

Λ = {j ∈ {1, . . . , d} : ‖a?j→‖`2 6= 0}, (8)

where a?j→ is the jth row of A?. It can be shown that the
active set is locally constant for the small perturbation of
{xs},D and, therefore, A? is locally differentiated. More-
over, similar to the procedure in [15, 27], it can be shown that
the set of points where the active set changes has measure
zero and therefore E

[
lsu
(
y,W ,α?1

)]
is differentiable on

D ×W , and the gradients can be computed using chain rule.
The detailed proof is a bit involved and is omitted here due
to the space limitation. The algorithm to find the optimal
dictionaryD and model parameterW ? for HSI classification
is described in Algorithm 1. In the special case when S = 1
and linear kernel is chosen, the proposed algorithm reduces
to the task-driven dictionary learning algorithm in [15]. In
theory, one needs to select λ2 in Eq. (5) to be strictly pos-
itive which guarantees the linear equation in the algorithm
(step 7) to have unique solution. In other words it is easy
to show that the matrix (k(DΛ,DΛ) ⊗ I + λ1∆ + λ2I)
in Algorithm 1 is positive definite given λ1 ≥ 0, λ2 > 0.
However, in practice it is observed that setting λ2 to zero
yields satisfactory results. As in any nonconvex optimization
problem, if the algorithm is not initialized properly, it may
yield poor performance. In this paper, we used unsupervised
dictionary learning with stochastic gradient descent to initial-
ize D. Once dictionary D is initialized, the initial value of
W is set by solving (3) only with respect to W which is a
convex optimization problem.

Algorithm 1 Stochastic gradient descent algorithm for the kernel-
ized task-driven dictionary learning under the joint sparisty prior
Input: Kernel function k, neighborhood size S, Regularization parameters

λ1, λ2, ν, learning rate parameters ρ, t0, number of iterations T , initial
dictionaryD ∈ D, and initial model parameterW ∈ W .

Output: LearnedD andW
1: for t = 1, . . . , T do
2: Draw a sample (x1, . . . ,xS ,y) where x1 is a training pixel ran-

domly selected from the training set with label y and (x2, . . . ,xS)
are its closest (S − 1) HSI pixels.

3: Find solution A? =
[
α?1 . . .α?S

]
=
[
a?

1→
T . . .a?

d→
T
]T ∈

Rd×S of the joint sparse coding problem (5).
4: Compute the set of active rows Λ ofA? using (8).
5: Let DΛ ∈ Rn×|Λ| and WΛ ∈ RC×|Λ| be formed by the columns

ofD andW which are indexed in Λ.
6: Compute ∆ = ∆1 ⊕ · · · ⊕∆|Λ| ∈ RS|Λ|×S|Λ|, where ∆j =

1
‖a?

j→‖`2
I − 1

‖a?
j→‖`2

3 a
?
j→

Ta?
j→ ∈ RS×S , ∀j ∈ Λ, I is the

identity matrix, and ⊕ is the direct sum operator.
7: Compute β ∈ RdS as:

βΥc = 0,βΥ = (k(DΛ,DΛ)⊗ I + λ1∆ + λ2I)−1g,

where Υ = ∪j∈Λ{j, j + d, . . . , j + (S − 1)d}, βΥ is a vector in
R|Υ| whose rows are those of β indexed by Υ, ⊗ is the Kronecker
product, g = vec

(
(WĀ− Ȳ )TWΛ

)
, Ā =

[
α?1,0, . . . ,0

]
∈

Rd×S , Ȳ = [y ,0, . . .0, ] ∈ RC×S , and vec(.) is the vectorization
operator.

8: Choose the learning rate ρt ← min(ρ, ρ t0
t

).
9: Update the parameters by a projected gradient step:

W ←W − ρt
(

(Wα?1 − y)α?1T + νW
)
,

D ← ΠD

[
D − ρt

S∑
s=1

( [
k′(xs,d1)− k′(D,d1)αs? . . .

k′(xs,dd)− k′(D,dd)αs?
]

diag(βs̃)

−
[
k′(D,d1)βs̃α

s
1
? . . . k′(D,dd)βs̃α

s
d
?
] )]

,

where s̃ = {s, s+ S, . . . , s+ (d− 1)S} and k′(D,dk) =[
∂ k(d1,dk)

∂d
k

. . .
∂ k(dd,dk)

∂d
k

]
∈ Rn×d.

10: end for

4. RESULTS AND DISCUSSION

The performance of the proposed HSI classification algorithm
is evaluated on the Indian Pine image, which is generated by
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),
and the University of Pavia image. The Indian Pine image
contains 16 classes spread over the 145 × 145 pixels and
each pixel has 220 bands ranging from 0.2 to 2.4µm. The
20 bands corresponding to the water absorption are removed
before processing the image. Similar to the setup in [11], we
randomly select 997 pixels (10.64% of the available data) to
form the training set and the rest of the pixels are used for test-
ing. The University of Pavia image is an urban image and has
115 spectral bands ranging from 0.43 to 0.86µm. It contains
9 classes spread over the 610 × 340 pixels. The 12 noisi-
est bands are removed. For this dataset, the standard train-
ing and test split is used [11] where the training set consists
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Table 1. Average and overall accuracy obtained for HSI classification of the Indian Pine image.
SVM-l SVM-k SRC-`1-l SRC-`1-k SRC-`12-l SRC-`12-k SDL-`1-l SDL-`1-k SDL-`12-l SDL-`12-k

Dictionary size d = 997 Dictionary size d = 80

OA 64.94 75.78 71.88 74.83 76.41 77.41 81.43 83.48 84.14 87.56
AA 56.53 61.40 64.28 67.19 64.67 63.66 66.43 74.65 76.56 81.25

Table 2. Average and overall accuracy obtained for HSI classification of the University of Pavia image.
SVM-l SVM-k SRC-`1-l SRC-`1-k SRC-`12-l SRC-`12-k SDL-`1-l SDL-`1-k SDL-`12-l SDL-`12-k

Dictionary size d = 3921 Dictionary size d = 45

OA 61.84 62.43 66.51 74.05 83.86 82.67 69.30 81.25 84.48 86.07
AA 65.09 72.14 75.98 80.06 86.29 85.28 83.44 82.24 84.47 87.37

of 3, 921 pixels (10.64% of the available data) and the rest
40, 002 pixels are used for testing. For the dictionary learning
algorithms, the size of the dictionary is chosen to be 5 atoms
per class. The regularization parameters λ1 and ν and Gaus-
sian kernel parameter σ are selected using cross-validation
on the sets {0.001, 0.01, 0.1}, {10−8, 10−7, . . . , 10−1}, and
{0.5, 1, . . . , 5}, respectively, and λ2 is set to zero. The learn-
ing parameters ρ and t0 are selected similar to the procedure
outlined in [15].

The performance of the proposed kernelized dictionary
learning algorithm is compared with the linear task-driven
dictionary learning algorithm (SDL-`1-l) proposed in [15].
For this purpose, we report the results of our proposed al-
gorithm using three different settings which are named as
SDL-`1-k, SDL-`12-l, SDL-`12-k. The SDL-`1-k is the ex-
tension of the SDL-`1-l to the kernel domain. The SDL-`12-l
is the enforcing collaboration of the neighboring pixel using
the joint sparsity and in the linear domain. Finally, the SDL-
`12-k is the setting where the neighboring pixels are jointly
reconstructed in the kernel domain. We also evaluate the per-
formance of the proposed algorithm against linear and kernel
SVM, namely SVM-l and SVM-k respectively, as well as the
sparse-based representation classification algorithms. For the
latter, all the training samples are used to construct the dic-
tionary and the results are reported using `1 and `1,2 priors in
both linear and kernel domains which are named as SRC-`1-l,
SRC-`1-k, SRC-`12-l, and SRC-`12-k, accordingly.

The classification results on the Indian Pine and Univer-
sity of Pavia hyperspectral Images are shown in Table 1 and
Table 2, respectively. As expected, the kernelized formula-
tions usually achieve better classification performance. More-
over, it is consistently observed that using joint sparsity prior
(`12 norm) to enforce collaboration among the neighboring
pixels improves the performance. The proposed SDL-`12-k
achieves the best performance against the competitive algo-
rithms for both datasets. In comparing the performances of
the dictionary-learning based algorithms with those in which
the dictionary is constructed by collecting all the training
samples, one should also note the difference in the dictionary

sizes. The proposed task-driven formulations achieve the
better performances with more compact dictionaries which
translates into more computationally efficient processing of
the test samples.

5. CONCLUSIONS

In this paper, a kernelized task-driven dictionary learning al-
gorithm is proposed for supervised HSI classification. The
proposed formulation enjoys a joint sparsity prior which en-
forces collaboration among the neighboring pixels for robust
sparse representation. It is shown that the proposed algorithm,
equipped with compact dictionary, achieves state-of-the-art
performances for classification of the Indian Pine and the Uni-
versity of Pavia hyperspectral images. The proposed formu-
lation provides a general framework for nonlinear supervised
dictionary learning that can be readily applied to other classi-
fication tasks. Future research topics includes extension of the
proposed algorithm to include other structured sparsity priors
and testing them on different classification tasks.
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