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Abstract— In this paper we investigate the advantages of
learning representations of color plus depth images (Red-
Blue-Green-Depth, RGB-D) over color only images (RGB) for
computer vision. Specifically, we investigate the advantages on
the task of object recognition. For this purpose, we applied
the state-of-art deep convolutional neural networks (CNN) for
classification of images on the RGB-D dataset published by [1].
We show that this approach provides better results than those
that use separate features for color and depth. Also, we probe
the resulting CNN to gain intuition about how filters for depth
and color channels iterate to generate useful features.

I. INTRODUCTION

Object recognition is one of the main areas of study in
computer vision. In order to automatically provide labels
for pictures of objects, several approaches have been taken
throughout the years. The approaches that attracted most
attention were the ones based on scale and shift invariant
features extractors, for example SIFT [2], SURF [3], HOG
[4] and ORB [5].

In recent benchmarks, those features extraction methods
were surpassed by deep neural networks that learn the
features and the classifiers straight from data [6]. The first
approaches to train to deep neural networks, were based on
pre-training the individual layers through unsupervised learn-
ing and then fine-tuning the final model using supervised
back propagation. Notably, the most successful methods for
the unsupervised step were based on Restricted Boltzman
Machines [7], Auto-Encoders [8] and Dynamical Systems
[9]. Recently, Andrew Ng and colleagues showed thorough
several papers that methods like ICA, Sparse Filtering and
even simple k-means can be successfully used for unsuper-
vised pre-training [10].

Nevertheless, one of the most astonishing results of neural
networks for the computer vision community were obtained
during the Imagnet competition at ILSCVRC 2012 through
plain supervised backpropagation. Largely due to the avail-
ability of enough data (1.5 Terabytes of images) and powerful
regularization techniques such as Dropout [6], Krizchevizk
et. al. [11] were able to train a neural network classifier
composed of 7 layers that obtained an accuracy of ∼86%
and beat the benchmark on the Imagenet dataset. The second
position was a submission based on a combination of SIFT
and other descriptors that obtained a lower accuracy of
∼74%. Also, CNNs like those trained on the Imagenet
dataset can provide better features than those of the other
aforementioned methods. Razavian et. al. [12] showed that
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CNN-based features provide state-of-art results on several
other computer vision benchmarks as well.

Nowadays, the necessity of unsupervised pre-training has
become controversial due to the difficulty of defining a
proper unsupervised technique, determining how much pre-
training is necessary, and the success of full back propaga-
tion. Practical issues also motivate the necessity of training
CNNs in supervised mode only, such as the minimal gain in
accuracy [6] and large datasets, which would consume too
much time in an unsupervised training phase. Based on those
arguments, here we also opt in for training CNNs using only
back propagation.

Meanwhile, the Microsoft Kinect project made depth and
3D vision sensor ubiquitous thus garnering attention toward
developing systems that exploit this extra dimension of image
data. This, combined with the recent advances in computer
vision that were made possible due to the availability of large
datasets, [1] published a large collection of color plus depth
images, referred as UW RGB-D dataset (RGB for color and
D for depth channels).

Unfortunately, all the methods that analyzed the UW
RGB-D dataset for the task of object recognition applied
feature extractors, either hand engineered [1] or learned
from data [13], separately to color and depth channels.
For instance in [1] the authors proposed a combination of
HOG and SIFT features for modeling the color image and
”spin-images” [14] features for modeling the depth images.
Another approach proposed learning features using k-means
and sparse coding [13], again, individual models were trained
for each data sensor. Even more innovative architectures
were proposed in [15], where recursive convolutional layers
projects the data to high dimensional spaces in an approach
similar to Extreme Learning Machines. As one can see,
this implies modeling the color and depths channels as
independent and the joint distribution as the product of
marginals. Even intuitively, one can see that this model
does not hold true because the colors of each pixel in the
image is not statistically independent of the distance of
those pixels to the camera, as it is well known in color
and aerial perspective theory [16]. Another argument against
the mentioned method is that they can be seen as deep
models without the supervised fine-tuning of the first layers,
only the top most logistic regression layer is adapted by
backpropagation.

Contrary to the previous works in the literature, here
we propose learning features that jointly represents RGB-D
images without the implicit independence assumption. Thus,
here we model each image as a tensor with the dimensions
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defined by the images width, height and 4 channels (3 for
color and 1 for depth). Those images and their respective
labels are used as input for training a CNN. This way,
the CNN learns distributed features for both color and
depth. Those features should be readily used through all
the nonlinear steps implemented by the layers of the deep
CNN for better recognition which is what backpropagation
theoretically guarantees [17]. In the next sections, we show
that this approach provides better classification results at the
instance classification task on the UW RGB-D dataset.

The following sections of this paper are organized as
follow. Section II details the dataset and the object recog-
nition problem at hand. We devote Section III to describing
the CNN architecture the we applied for learning features
from RGB-D images. In Section IV, we compare the results
that we obtained with those previously published for the
same problem as well as similar architectures learning from
RGB only images, we also probe the neural network filters
and preferred stimulus at this section with the purpose of
gaining intuition about what the CNN considered helpful for
recognition. We conclude this paper in Section V.

II. OBJECT RECOGNITION FROM RGB-D IMAGES

The RGB-D dataset [1] consists of 300 everyday use
objects such as coffee mugs, computer keyboards, soda
cans, and tomatoes. Several pictures of those objects were
taken from different angles, rotations and distances using a
PrimeSense camera. That camera consists of a technology
similar to the one present on the famous Microsoft Kinect
sensors. Those pictures consists of a color (RGB) and
depth. The depth information is calculated from infrared
sensor measures as scaled units of distance, but the detailed
algorithm used by the device is undisclosed. At a high level
description, we can say that the infrared grid of dots is
projected and the deformation of the grid viewed by the
paired camera is used to interpret the depth. Samples of
pictures from that dataset, along with classification results are
show in Fig. 1. Here, we investigated the task of classifying
independent frames in one of 300 classes. It is noteworthy
that the previously reported approaches used only a small
portion of the training data for unsupervised pre-training.
This was due to the fact that unsupervised learning usually
overfits the most repetitive aspects of the training data (such
as edges and other high contrast patches in this case) [13]. On
the other hand, here we used Dropout [6] to avoid overfitting,
which allowed to use the full training dataset (part of which
was kept for validation, the test dataset was never seen during
training).

III. CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURE

The CNN architecture that we used is similar to the
one proposed for classifying the CIFAR-10 dataset [6]. The
CIFAR-10 consists of 70000 color images of 32 x 32 pixels,
divided in 10 classes. Still inspired by that approach, we
reshaped all the images at the UW RGB-D dataset to 32x32

and removed the mean, which also sped up the training time
by a few hours.

The CNN itself consists of the following layers and
processing steps:

1) Convolutional layer, 64 filters of size 5x5 each,
2) Max-pooling, 3x3 pool, stride of 2 and input is padded

with 2 rows and 2 columns of zeros
3) Cross-channel normalization,
4) Convolutional layer, 64 filters of size 5x5
5) Max-pooling, 3x3 pool and stride of 2,
6) Cross-channel normalization
7) Fully-connected layer (regular MLP layer), 2056 out-

puts,
8) Fully-connected layer, with 2056 outputs, and
9) Fully connected layer, that outputs 300 classes

It is important to comment that convolutional layers are
implemented as following. Let Xc be an input image with
composed the channels c = 1, 2, 3, 4 that addresses red, blue,
green and depth, respectively. A convolutional filter Wc with
the same number of input channels as X produces an output
defined by:

O =

4∑
c=1

Xc ?Wc, (1)

where ? denotes the convolution operation.
An attentive reader may notice that if the scale of the

four channels are different, the summation in 1 may contain
biased information to only one of those channels. He may
even be concerned that this effect is propagated forward
through all the convolutional layers. For instance, in some
cases the color channels are encoded as 8 bits unsigned
integers (maximum value 256) and depth channels as 16
bits unsigned integers (maximum value 65535). This is
not the case for the RGB-D dataset where both color and
depth channels are equally encoded as uint8. Nevertheless,
we further refer to the Cross-channel normalization (also
referred as cross-map normalization, or cmnorm for short)
steps referred at items 3 and 6 above. This step consists of
the following nonlinearity.

Let Oi be the i-th output channel of a convolutional layer.
Calculate the Ri = (1+α

∑k
j=−k(Oi+k)

2)β and output Oi

Ri
.

Where k, α, β are free parameters defined by the user. Here
we kept k = 3, α = 0.001 and β = 0.75 as suggested by [6].
But note that this normalization enhances the competition
between filters and distributes the representations, in order to
guarantee that different filters do not overfit or over explain
the same input patterns. Also, through backpropagation of
the errors, the stochastic gradient optimization is capable
of scaling the filters Wc in order to account for a proper
scaling of the input channels without the user necessarily
preprocessing the data. This intuition is confirmed by our
results shown in the next section.

Further, we applied a rectified linear unity as the activation
function after the convolutional and fully connected layers.
The final classification result of the network is calculated as
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the maximum of a softmax nonlinearity applied over the last
layer output vector z:

yj =
ezj∑K
k=1 e

zk
(2)

The cost function for training the network is the negative
log-likelihood between the estimated labels y and the desired
labels t:

L(y, t) =

K∑
k=1

−tklog(yk) (3)

We simulated the network on a NVIDIA GPU GTX 650
using cuda-convnet library 1. We added a data handler to
the library in order to deal with 4 channel (RGB-D) input
images, we also compared the results using color only input
and the data handler provided by the CIFAR-10 experiment.
We report our results at the next section.

IV. RESULTS

We run the network mentioned on the previous section for
200 epochs and kept the best solution by cross-validation. We
separated every fifth frame as in the protocol suggested by
[1]. In Table I we show our results alongside the results pub-
lished before on the same dataset. The architecture proposed
in this paper is referred as CNN+RGB-D for color plus depth
images and CNN+RGB for color only input images.

TABLE I
CLASSIFICATION ACCURACY (% CORRECT) ON UW RGB-D DATASET

INSTANCE RECOGNITION TASK.

CNN+RGB-D CNN+RGB [1] [13]
99% 96% 90.2% 92.8%

Some classification results using color and depth input
images are show in Fig. 1.

Beyond that, to confirm our intuition that training CNNs
on RGB and depth channels together leads to joint feature
representations, we show some of the preferred stimulus that
leads to the classification of 3 different classes in Fig. 2.
There, we can see that the trained CNN looks for patterns at
the 4 input channels at the same time. For the class apple-1
we can see that the preferred stimulus is relatively smooth
in the center of the image, as compared to the keyboard-
1 preferred stimulus. The later presents high frequency
structures, possibly related to the keys of the keyboard. Also,
in all the preferred stimuli, we see information about the
preferred backgrounds. This is due to the fact that the dataset
does not have diversity enough. Thus, we believe that this
is used by the network to calculate the relative size of the
objects in the scene. Note how the network expects that food-
can-12 and apple-1 have depth over the average in the upper
corners (white values).

To confirm that the network learns to deal by itself
with the scales of the input channels, we investigated the

1https://code.google.com/p/cuda-convnet/

Fig. 1. Sample of classification results of the CNN dataset using RGB-D
features. Each subplot shows the first five guesses of the algorithm. The red
bar indicates the right label.

R BG D

apple_1

food_can_12

keyboard_1

Sample image

Prefered stimulus

Sample image

Prefered stimulus

Prefered stimulus

Sample image

Fig. 2. Preferred input image of our RGB-D CNN for 3 different classes
in the UW RGB-D dataset. Note that those stimulus are in the zero mean
space that is the actual input of the network. Thus, their values should be
interpreted relatively to the mean. White represents values over the mean
and black, values under the mean.
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Fig. 3. Convolutional kernels of the first layer of our RGB-D CNN. Note
the that some filters learns Gabor like edges that span through all the four
channels.

filters of the first layer of the network. We show the 64
learned filters in Fig. 3. Also, we investigate the norm of
those filters. Particularly, we noticed that some filters have
all the 4 channels in the same scales, while others have
the depth channel 10 times smaller than the color channel
(the filter in the fifth row of Fig. 3). The distribution of
norms per channel This confirms our intuition that plain
backpropagation is capable of dealing the scales of the input
images, not requiring preprocessing on that respect.

V. CONCLUSIONS

In this paper we investigated the advantages for learn-
ing joint features for color and depth images for object
recognition. We showed that better results can be obtained
when a large convolutional neural network is trained on the
full images, where the depth channel is treated on equal
bases as the color channels. Thus, the network was able
to learn features, under supervision, that do not rely on
the assumption of independence between RGB and depth
images.

We obtained an accuracy of 99% using RGB-D while we
got only 96% accuracy using RGB only, although we used
the same CNN architecture for both cases. Also, we note that
both results are higher than those previously published on the
same task, which restates the superiority of deep learning
based methods for object recognition.

Future applications of the present work may include a
system for online object recognition on a market shelf. We
note that recent advances in the literature points to the
possibility of the same CNN used for recognition to be used
for segmentation [18]. We plan to investigate the advantages
of the joint color and depth features learned in the present
research in the segmentation problem.
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