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ABSTRACT

This paper proposed a novel method for face hallucination
based on a neighbor embedding technique. Traditional neigh-
bor embedding approaches often offer counterintuitive results
because consistency between high resolution images and low
resolution images cannot be preserved without taking the in-
trinsic features of the image patches into account. In order
to reinforce the consistency, on the one hand, we exploit the
singular-values-unique (SVU) features inspired by singular
values decomposition (SVD) successfully applied in image
processing. On the other hand, we introduced the Histograms
of Oriented Gradients (HOG) features to characterize the lo-
cal geometric structure of the image patches to alleviate the
effects of noise. At last, the learning space is extended to a
coupled feature space that combines the SVU and HOG fea-
tures. Simulation experiments show that this proposed ap-
proach could provide competitive results in simulation exper-
iments in subjective and objective quality.

Index Terms— Face hallucination, neighbor embedding,
SVU, HOG, coupled feature space

1. INTRODUCTION

Face hallucination, a hot research topic in image processing
and computer vision, is aimed at estimating high-resolution
(HR) face images from one or many low-resolution (LR)
ones. It has broad applications in tasks such as face recog-
nition, long distance video surveillance. Although a lot of
related works have been proposed, such as interpolation
methods, reconstruction-based methods [1, 2] and neighbor
embedding (NE)-based methods [3]. The NE-based meth-
ods show the most promising solutions for its impressive
performance.

In 2004, inspired by locally linear embedding, Chang et
al. [3] firstly introduced an image super-resolution recon-
struction method with a manifold assumption. The manifold
assumption states that patches in the low- and high-resolution
images form manifolds with similar local neighborhood struc-
tures. In the wake of Chang’s pioneering work, many vari-
ant improvements to NE for super-resolution(SR) have been
proposed. Chan et al. [4] employed a novel combination of
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features for better neighborhood preservation, subdivide the
training samples with two flexible schedules for guiding the
neighbor search and adaptive tuning the neighborhood size,
and bootstrap the edge samples for exploiting the capacity of
a small training set with less redundancy. Compared with [3],
this approach can reconstruct sharper edge details. However,
their algorithm produces artifacts in the case of incorrect edge
detection. In other words, their approach has not yet settled
the problem of ambiguities between LR and HR manifolds.
Recently, sparse coding method has achieved a notable suc-
cess in computer vision. Yang et al. [5] proposed a novel
method for adaptively choosing the relevant reconstruction
neighbors to represent the relationship between the training
data and the input patches based on sparse coding. Dong et
al. [6] proposed an adaptive sparse domain selection (ASDS)
model for image SR recovery, where self-similarities within
the same scale is formulated as a regularization term for more
robust reconstruction. Considering both the local sparsity
and the nonlocal sparsity constraints, they further proposed
a centralized sparse representation model for image restora-
tion, achieving promising performance on image SR recon-
struction. Very recently, Li et al. [7] have proposed a method
for face hallucination based on learning the sparse local-pixel
structures of the target HR facial images. The sparse repre-
sentation is used to capture the local structures from the HR
example faces, and optical flow is applied to make the learn-
ing process more accurate.

Obviously, feature representation is key to the neighbor
searching and recovery of the high-resolution images in the
NE technique. Meanwhile, we note that the previously men-
tioned methods used intensity information and simple feature,
i.e., the value of a pixel and the gradients of each neighbor-
hood, as a way to measure the similarity of patches. However,
these features lead to not holding always the abovementioned
manifold assumption. Because pixel intensities only exhibit
their variance to intensity difference between image patches,
whereas gradient features are sensitive to noise. Therefore,
the motivation and starting point of this letter is to exploit the
intrinsic features of image patches and alleviate the effects
caused by noise. In this way, we can get more accurate neigh-
bor searching and better performance. Inspired by singular
values decomposition (SVD) successfully applied in image
processing [8,9], we proposed a singular-values-unique(SVU)
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feature to characterize the intrinsic structure based on SVD
of each image patch. Then, to further reinforce the consis-
tency between the low-resolution manifold (LRM) and the
corresponding high-resolution manifold (HRM), we exploited
the Histograms of Gradient (HOG) features of image patches
to capture the local geometric structure and alleviate the ef-
fects from noise [10]. Finally, a coupled feature space is
constructed, which combined the exploited singular-values-
unique feature together with the HOG features. The similar
patches are searched in the coupled space, where the consis-
tency of LRM and the corresponding HRM can preserve ef-
fectively.

The rest of this paper is organized as follows: In Section 2,
we introduce neighbor embedding method briefly and present
the proposed method. Results are provided in Section 3, both
simulated and practical results are included. The flowchart of
our proposed algorithm is summarized in Fig. 1.

HR Training images

Fig. 1. The flowchart of the proposed algorithm.

2. PROPOSED

2.1. Brief Introduction of NE Method

NE for SR reconstruction assumes that the two manifolds
constructed by the LR and HR patches respectively have sim-
ilar local structures and an HR patch can be reconstructed by
a linear combination of its neighbors [3]. Hence, each low-
or high-resolution image is represented as a set of small over-

lapping image patches. Concretely, X, = {xi}i[:l and Y =

{ yi }5:1 are the training dataset of LR image patches and the
corresponding HR image patches, respectively. And the test
N N
LR image is denoted by X; = {x{} ,and Y; = {y{}
j=1 j=1
is the estimated HR image. Obviously, I and J are the num-
ber of image patches in the training dataset and that in the test
image, respectively. For each patch x] in image X;, we find
K nearest neighbors in training dataset X , i.e.:
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Then reconstruction weights of the neighbors are computed
by minimizing the error of reconstruction x7 :

2
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w
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Then the high-resolution patch y{ is computed by using the
reconstruction weights: When all the HR patches vectors are
computed, we merge all the estimated pixel-based patches to
obtain the HR image. Since the LR patches are taken from
the input image with some overlap, the final image is then ob-
tained by simply averaging the pixel values in the overlapping
regions.

2.2. Coupled Learning Based on Singular-Values-Unique
and HOG Features

From the brief introduction of NE method, we note that fea-
ture selection and weights computation play an essential role.
Although The LR feature vectors look like each other in low-
resolution manifold, their corresponding HR feature vectors
may have larger variety in appearance due to the one-to-many
mappings existing between one LR image and many HR im-
ages, as shown in Fig. 2. And this serious ambiguity leads
to bad weights computation. Thus, it is not easy to achieve
the desired final HR output. With respect to feature selec-
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Fig. 2. The one-to-many relationship between one LR image
and many HR images.

tion, inspired by the Singular Values Decomposition (SVD)
applied in image processing successfully [8,9], we exploit
a simple, yet powerful scheme for describing the underly-
ing features of faces, called singular-values-unique(SVU) fea-
tures. SVD of an image stems from the fact that it can be
factorized into two orthogonal matrices and a diagonal ma-
trix with singular values (SV) on the diagonal. The singu-
lar values are unique for the image. Actually SV are likely
to reflect the intrinsic structure of an image. Based on the
description, we conduct SVD on a local patch P of p x p
pixels as follows: P = UWVT where UTU = VTV =1
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, and [ is the unit matrix. W is a diagonal matrix whose
elements \; on the diagonal are called singular values, i.e.
W = diag (A1, A2, ..., Ap) . The singular values vector S of
patch P is defined as S (P) = [A1, Ag, .. ., /\p]T .

In the following, we analyze robustness of the SVU fea-
ture in the face representation. As illustrated in Fig. 3, we
obtain an index set of neighborhood patches according to the
LR patch based on different features: NE and SVU. Then we
present the corresponding HR patches, although they can be
degraded to the same LR patch. To illustrate the effective-
ness of the proposed feature representation, we calculate the
sum of the root mean square error (RMSE) between the orig-
inal HR patch and the HR ones in the neighborhood. From
the values of RMSE, we know that as a feature representa-
tion, pixel intensity is inferior to the SVU feature. In other
words, the SVU can provide features with more distinctive-
ness. Thus, we employ the SVU as a novel feature to char-
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Fig. 3. The Effectiveness of SVU in neighborhood search.

acterize the image patch. In this way, the neighbor selection
will be more accurate. It is conceivable that the local geom-
etry consistency between LR and HR features is guaranteed
greater than that of original LR and HR manifolds.

Besides, in order to represent a variety of image patterns
and alleviate the effects from noise, as a rather good geomet-
ric descriptor, HOG features are used to characterize the local
structure of image patches, which makes full use of the distri-
bution of local intensity gradients or edge directions.

To extract the HOG features, 1-D derivation masks
[1,0,—1] and [1,0,—1]" are first conducted on the input
image I to compute the horizontal gradient GG, and vertical
gradient G, ,i.e. G, = [1,0,—1]* I and G, = [1,0, —1]" %1

. Thus the gradients direction § = arctan g’

2
x

. Next, we

can discrete the direction into 9 bins evenly spaced over
(unsigned” gradient). The size of the histogram box is set
20° (180°/9 = 20°). We divide the image into some 8 x 8
spatial regions (“cells”), for each cell accumulating a local
1-D histogram of gradient directions over the pixels of the
cell. Finally, the edge orientation histograms of each block
are combined and normalized to the unit £5-norm. The block
size is 2 x 2 cells. Concretely, for an 16 x 16 image patch, a
36-dimensional HOG feature is constructed.

To improve the accuracy of weights computation, we
combined singular values vectors of image patches with the

corresponding HOG features as a coupled feature to represent
each patch. It means that we extend the learning space from
single to a coupled feature space. The advantage of NE-based
face hallucination will be reasonably highlighted. Thus, in

the NE algorithm, X = {x;}f:

and X; = {x{} are

1 j=1

substitute by X, = {x;N}f:l and X; = {xLN}jzl ,
where x!_, = [S(x;),hﬂ andxi;N = [S(xi),h{} . S()
denotes the singular values vector. h represents the HOG
features. Eq. (1) and (2) can be rewritten as follows:

. 2
= in® ||yd i
NN; = argmin th_N—xs_NH
X yEXs 2

— il o = § ’ ik Ty, —
W, = argmin ||X;_ WiXe_ N st. I'w =1
w

kENN;

2.3. Global Reconstruction Constraint

Face hallucination algorithm based on NE method is based
on image patches. Since the patch size is usually relatively
small, the representation ability of each patch is local. Usu-
ally, the initial estimation produced through the above pro-
cess does not meet with the global reconstruction constraint
perfectly. In this letter, to address this problem, the iterative
back-projection (IBP) is employed to guarantee the consis-
tency between the initial HR estimation and the final outcome
[11], which should be the best viewed both globally and lo-
cally. Let Yy denote the initial estimation and Y represent the
underlying HR image, which is assumed to get the observed
LR observation X after being degraded by the degraded op-
erators D , i.e., X = DY . The final reconstructed image is
obtained from

Y* = argmin || DY — X||§ +c||Y - YO||§
Y

where c is a balancing parameter. The solution to this opti-
mization problem can be efficiently computed using gradient
descent. The update equation for this iterative method is

Yoi1 =Y, +p [DT (X = DY) + ¢ (Y, — Y0)]

where Y, is the estimate of the high-resolution image after n
th iteration. w is the step size of the gradient descent. After
n steps optimization process of the above, the final result Y*
satisfied the global reconstruction constraint.

3. EXPERIMENTAL RESULTS

The experiment is conducted on extended Yale face database
B (B+) [9], which contains 2432 images from 38 subjects and
each subject has 64 frontal images but under different illumi-
nation conditions. We randomly choose 28 subjects. Each
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Fig. 4. The face hallucination results using different methods.
(a) Low-resolution image. (b) Results by NE [10] (28.8456,
0.8297). (c) Results by ASDS [23] (31.5407, 0.8898). (d) Re-
sults by SLPS (29.4352, 0.8324). (e)Results by the proposed
method (33.2665, 0.9088). (f) Original high-resolution facial
image.

subject selects 8 images under the similar illumination con-
dition according to the angle the light source direction makes
with the camera axis (about 12°) as the training set. The rest
10 subjects for testing. In order to simulate the surveillance,
the HR facial images are downsampled by a factor of 4 and
smoothed by a 7 x 7 Gaussian kernel of standard deviation 1.
Thus the size of LR face images are 48 x 42 pixels.

After performing our experiences with different patch
sizes and overlapping sizes, we find that the PSNR values
get larger as the overlap gets larger with the patch size fixed,
and the PSNR values decrease as the patch size increases
with the overlap fixed. When the patch size is small, artifacts
may exist in the results. Thus, we choose to divide the orig-
inal LR images into 16 x 16 patches with an overlap of 13
pixels between the adjacent patches. For consistency in the
corresponding HR facial images, the patch size is 64 x 64
with an overlap of 52 pixels for HR images. Besides, the
neighborhood size for NE procedure is five.

To assess objectively the performance of the proposed
method, peak signal-to-noise ratio (PSNR), and structural
similarity (SSIM) are calculated, as shown in Table 1 and
Fig. 5, respectively. The PSNR values show that the pro-
posed method is superior to the others. This is partly due
to the coupled constraint on the LR and HR image patches
reduces the ambiguity between the LR image patches and
the HR patches. Moreover, SSIM is based on the HVS. The
SSIM scores also suggest the effectiveness of the proposed
method. In order to further testify the performance of our
method, we perform the proposed method on a set of real LR
facial images. These subjects are not present in the database
we used for training and testing above. The super-resolved
face images are shown in Fig. 6. Note that the quality of the
input image is significantly worse. Still our algorithm is able
to generate reasonably good results.

Table 2. The average PSNR values of different methods

method NE ASDS SLPS
PSNR(dB) 30.1430 31.9976 30.7938

Proposed
32.8112

0.9)
0.89
0.88

—_ —
NE ASDS SLPS

Proposed

Fig. 5. SSIM comparison with other methods

Fig. 6. Results on a real world image(Top). Some original
small images(Middle). The super-resolved faces (Bottom).

4. CONCLUSION

This paper has presented a novel face hallucination scheme.
The distinction of the proposed approach is that the neigh-
bor embedding is performed on a coupled space that combine
singular-values-unique and HOG features rather than on the
original LR space. The approach can effectively enhance the
consistency between the LR and HR facial images. Experi-
mental results demonstrate that the proposed method outper-
forms some state-of-the-art image hallucination algorithms.
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