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ABSTRACT

One main challenge in developing a system for visual surveil-
lance event detection is the annotation of target events in the
training data. By making use of the assumption that events
with security interest are often rare compared to regular
behaviours, this paper presents a novel approach by using
Kullback-Leibler (KL) divergence for rare event detection in
a weakly supervised learning setting, where only clip-level
annotation is available. It will be shown that this approach
outperforms state-of-the-art methods on a popular real-world
dataset, while preserving real time performance.

Index Terms— event detection, video surveillance

1. INTRODUCTION

In recent years, a large number of approaches have been
proposed for automatic event detection in video surveillance
systems [1–9]. Real world surveillance scenes are often
crowded, making approaches based on object tracking [10]
unsuitable, and leading to the development of techniques that
extract features directly from the image to recognize actions
and events [1, 4, 6, 7, 11]. A popular feature representation
is an optical flow based descriptor and its extensions [3, 6],
which is termed “discrete optical flow” in [13]. However, as
optical flow only captures motion between successive frames,
the loss of motion characteristics across more than two frames
results in some events not being separable. It has been shown
in [8] that by using point trajectories as the feature, improve-
ment can be achieved as the trajectories inherently preserve
the order of the motion. Regarding the machine learning
paradigm, most publications in this field use one-class unsu-
pervised learning [1, 6, 11] based on outlier detection. This
strategy is based on the assumption that suspicious and emer-
gency events usually occur at low frequencies. However, such
a detection system is limited as it cannot identify what the
detected event is. To be able to identify the events, supervised
learning approaches have to be used. However, the annotation
requirements (individual bounding boxes for all events) make
such an approach highly impractical. An alternative is frame
level annotation, however this is ambiguous, as there are usu-
ally a lot of other irrelevant events in the scene. Recently,
[3] introduced the concept of “weakly supervised learning”,

which is a special type of supervised learning in activity per-
ception where only binary labels at the clip level are used to
indicate if an event of interest is present or not, but does not
identify where and when the event happens. In this paper,
based on the concept of "weakly supervised learning", we
propose a method that applies Kullback-Leibler (KL) diver-
gence [12] to detect the video clips that contain the event
of interest with binary labels at the clip level. Compared to
other weakly supervised learning methods [3, 13], the classi-
fier in the proposed approach has a much lower complexity,
which results in computational efficiency and being robust to
parameter initializations. The additional assumption that the
target events are rare matches many real world surveillance
applications that focus on security.

2. ALGORITHM

2.1. Feature Representation

We consider two feature representations: the discrete optical
flow approach of [6], and a trajectory representation similar to
that proposed by [13]. Within the trajectory based approach,
we consider MPEG motion vectors as in [13], particle video
as used by [8], as well as the KLT (Kanade-Lucas-Tomasi)
tracker [14].

To extract trajectory features, the video is divided into uni-
form clips, from which trajectories are extracted (either using
MPEG motion vectors, particle video, or the KLT tracker).
Trajectories with short durations are removed, and a set of
point trajectories is created (See Figure 1). A trajectory, s, is
described by a sequence of locations in time. Since the tra-
jectories that are generated by different instances of the same
events vary from each other, it is necessary to conduct a di-
mension reduction to capture the key characteristics that are
shared by different instances of the same event. Motivated by
[13, 15, 16], the low Fourier coefficients are used to describe
the trajectories. The sequence is separated into a horizontal
and a vertical series, which are denoted X = [x1, x2, ..., xN ]
and Y = [y1, y2, ..., yN ]. The Fourier Transform is taken sep-
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Fig. 1. Trajectory Construction

arately on the two signals,

Xf =
1√
N

N−1∑
i=0

xiexp(
−j2πft
N

), f = 0, 1, ..., N − 1 (1)

Yf =
1√
N

N−1∑
i=0

yiexp(
−j2πft
N

). f = 0, 1, ..., N − 1. (2)

The number of points N is equal to the number of frames
in a video clip. For trajectories with fewer than N points,
the last point is repeated to fill the trajectory, and thus ensure
that the DFT is performed on a fixed length sequence. The
Fourier coefficients of each trajectory are viewed as a sample,
and K-means is applied to train a codebook. Finally, a video
clip is represented by a histogram of codewords. To select the
number of clusters for K-means, we select the elbow point of
the curve formed by plotting number of clusters against the
sum of square errors [17].

2.2. Event Detection using KL divergence

In this section, we present a novel approach for event detec-
tion using weakly supervised learning, meaning we only have
binary labels at the clip level (as in [3, 13]) during training. As
it is highly likely that the event of interest will be co-occurring
with many others, the irrelavent events at the same clip are ex-
pected to result in the failure of a supervised learning method.

In real world deployment, events with security interest of-
ten occur in lower frequencies than regular behaviours, indi-
cating the number of video clips labeled "1" (containing the
event) is much smaller than the number of video clips labeled
"0" (without the event). By making use of this assumption,
we propose to apply Kullback-Leibler (KL) divergence [12]
to efficiently and effectively separate the video clips into two
classes based on whether the event of interest is present or
not. The structure of the learning model is similar to the naive
Bayes model, with the difference being that the log-likelihood
used in naive Bayes is replaced with KL divergence. How-
ever, this replacement brings significant benefits in our appli-
cation.

Let V = {v0, v1, v2, · · · , vK−1} be the vocabulary with
a cardinality of K. Let c denote the label of a video clip, and
p represent the probability. Let a video clip be represented as

a histogram of code words, X = [x0, x1, · · · , xK−1], where
xi is the frequency of vi in the present video clip. Suppose
a video clip X is considered to be generated by sampling a
distribution H , which is a probability distribution of the K
codewords over V . Let G ⊂ V be a subset of V which
contains the codewords specified for the event of interest. The
motion patterns for the background events are represented by
codewords other than those in G. Let M be the cardinality of
G. As G is a non-empty subset of V , we have K > G ≥ 1.
To facilitate the analysis, we can order the code words in V
so that the last M codewords are elements of G, as

vK−M , vK−M−1, · · · , vK−1 ∈ G. (3)

Let H = [h0, h1, · · · , hK−1], where hi is the probability
of the codeword vi. Clearly,

∑K−1
i=0 hi = 1, and hi = 0.

Suppose the difference between class “1” and class “0”
is only whether there is the presence of the event of interest
or not. We partition the video clips generated by H into two
classes. Those containing the codewords from G are labelled
“1”; others are labelled “0”.

Now let us consider the conditional probabilities under the
known labels. For video clips labelled “1”, all codewords are
possible. Therefore,

p(vi|c = 1) = hi, (4)

where 0 ≤ i < K. For video clips labelled “0”, the occur-
rence of codewords from G is impossible, which indicates

p(vi|c = 0) =

{
hi

S (i < K −M)

0 (K > i ≥ K −M)
, (5)

where S =
∑K−M+1

j=0 hj is a constant to ensure
∑K−1

i=0 p(vi|c =
0) = 1. Since S is the summation of a partial probability dis-
tribution, then S < 1. If i < K −M , we will have

p(vi|c = 1)

p(vi|c = 0)
=
hi
hi

S

= S. (6)

Eq. 6 shows that ratio of the probabilities of a codeword
associated with background events conditioned on the two la-
bels is a constant.

The goal of the learning process is to estimate p(vi|c =
j), where i ∈ {x|x ∈ N, 0 5 x < K} and j ∈ {0, 1}.
If we partition the training samples into two groups by their
labels, we can obtain the histogram of words for each class.
Given sufficient training data, these histograms can be used to
estimate p(vi|c = j) by adding a normilisation step,

p(vi|c = j) ≈ nji
N j

, (7)
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where nji denotes the frequencies of vi when c = j; and
N j is the total number of words when c = j. From Eq. 6 and
Eq. 7, we have

n1i
n0i
≈ p(vi|c = 1)×N1

p(vi|c = 0)×N0

= S × N1

N0
, (8)

under the condition of i < K−M ( this indicates vi ∈ G).
In the previous discussion, it was shown that S < 1. Suppose
that the event of interest is a rare event, such that the number
of video clips labelled “0” is much larger than the number of
video clips labelled “1”. Thus the number of codewords for
the video clips labelled “0” is much larger than the number
of codewords for video clips labelled “1”, i.e. N1 < N0.
Then N1

N0 < 1. Based on the above discussion, we have the
following expression:

∀i, j i 6= j; vi, vj /∈ G⇒
n1i
n0i

=
n1j
n0j

= r, (9)

where r < 1 is a constant. If the training dataset is suffi-
ciently large, then n0i � 1 and n1i � 1. We further have

1 + n1i
1 + n0i

≈ n1i
n0i

= r vi, vj /∈ G && i 6= j. (10)

The term 1+n1
i

1+n0
i

refers to the Laplace smoothing approx-

imation in the training process. In the case where nji = 0,
P (vi|c = j) = 0. The possibility of 0 for the probabilities
will causes problems such as division by 0 in the following
process. As such, additive smoothing (Laplace smoothing) is
applied[18]

p(vi|c = j) ≈ 1 + nji
N j +K

. (11)

The addition of 1 in the numerator avoids the encounter
of 0 probabilities, and the addition of K in the denominator
ensures the marginal probabilities sum to one.

After training, there is a learned distribution of codewords
for each class: P0 for class “0”; and P1 for class “1”.

Given a video clip X = [x0, x1, · · · , xK−1], we can
normalise it into a distribution Q = [q0, q1, q2, · · · , qK−1],
where qi = xi/

∑K
j=0 xj . Intuitively, one simple criterion of

recognition can be that if the distribution Q is closer to P0,
then the video clip is recognized as class “0”; otherwise, it is
recognized as class “1”.

The KL divergence is used to measure the similarity of
two distributions. Let DKL(Q||P0) be the KL divergence for
Q and P0; and let DKL(Q||P1) be the KL divergence for Q
and P1. Then we have

DKL(Q||Pc) =

K−1∑
i=0

qiln
qi

p(vi|c)
, (12)

where c ∈ {0, 1} is the class label. In binary classifi-
cation applications using traditional supervised learning, the
result DKL(Q||P0) > DKL(Q||P1) indicates that the code-
word distribution in the present video clip Q is closer to the
codeword distribution of class “1”. Thus we classify the video
clip as class “1”. Equivalently, we can write the criterion as
DKL(Q||P0)−DKL(Q||P1) > 0 for the classification of la-
belled "1" video clips. In the following discussion, we show
that this method can be extended to support weakly super-
vised learning by modifying the threshold. In reality the abil-
ity to support weakly supervised learning depends on the as-
sumption that the number of video clips labelled “0” is much
larger than those labelled “1”, which mathematically derives
Eq. 10.

More precisely, we have

DKL(Q||P0)−DKL(Q||P1)

=
∑K−1

i=0 qiln
qi

p(vi|c=0) −
∑K−1

i=0 qiln
qi

p(vi|c=1) (13)

=
∑K−1

i=0 qi(ln
qi

p(vi|c=0) − ln
qi

p(vi|c=1) )

=
∑K−1

i=0 qiln
p(vi|c=1)
p(vi|c=0)

= ln
∏K−1

i=0 (p(vi|c=1)
p(vi|c=0) )

qi . (14)

Suppose that the input video clip is labelled “0” . This
indicates that qi = 0 for any vi ∈ G. Then we have

DKL(Q||P0)−DKL(Q||P1)

= ln
∏

i/∈G(
p(vi|c=1)
p(vi|c=0) )

qi

= ln
∏K−1

i=0 (
1+n1

i
N1+K

1+n
j
i

N0+K

)qi

= ln
∏K−1

i=0 (
1+n1

i

1+n0
i
× N0+K

N1+K )qi

≈ ln
∏K−1

i=0 (r × N0+K
N1+K )qi

= ln(r × N0+K
N1+K )

∑
i/∈G qi

= ln(r × N0+K
N1+K ). (15)

Now suppose the input video clip is labelled “1”. In this
case, at least for some vi ∈ G, qi 6= 0. Since code words
from G only occur in the video clip labelled “1”, then for any
vi ∈ G, we have

p(vi|c = 0) =
1

N0 +K
;

p(vi|c = 1) >
1

N1 +K
. (16)

Eq. 16 leads to the following result as
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p(vi|c = 1)

p(vi|c = 0)
>

1
N1+K

1
N0+K

=
N0 +K

N1 +K

> r × N0 +K

N1 +K
s.t vi ∈ G. (17)

Applying Eq. 17 to Eq. 14, we have

DKL(Q||P0)−DKL(Q||P1)

= ln
∏

i/∈G(
p(vi|c=1)
p(vi|c=0) )

qi
∏

i∈G(
p(vi|c=1)
p(vi|c=0) )

qi

= ln
∏

i/∈G(r ×
N0+K
N1+K )qi

∏
i∈G(

p(vi|c=1)
p(vi|c=0) )

qi

> ln
∏

i/∈G(r ×
N0+K
N1+K )qi

∏
i∈G(r ×

N0+K
N1+K )qi

= ln(r × N0+K
N1+K )

∑K
i=0 qi

= ln(r × N0+K
N1+K ). (18)

From Eq. 15 and Eq. 18, using the distance of KL diver-
gence ( DKL(Q||P0)−DKL(Q||P1) ) as the criterion, theo-
retically there is a separation boundary ln(r× N0+K

N1+K ) which
can be used to separate the video clips into the two classes.

3. EVALUATION

The MIT Traffic Database [6] is a 90-minute real world traf-
fic surveillance video and is used here. This dataset (see Fig-
ure 2) is very challeging as it contains time varying levels of
occlusion; a mix of vehicles, pedestrians and bicycles; wav-
ing trees and shadows. The events to detect are defined in
Figure 2, and we follow experimental protocol and ground-
truth of [13]. The video is cut uniformly into video clips of
length 96 frames. In total there are 1728 video clips. Video
clips are partitioned into five equal groups for a 5-fold cross
validation, and performance is evaluated using the mean of
the AUCs (Area Under the ROC curves) on the five folds.
Each experiment is conducted with a different combination of
classifier, feature descriptor and parameters. Experiments are
conducted using four different features (discrete optical flow
and three trajectory based approaches), and for each trajec-
tory approach we vary the number of AC Fourier coefficients
(1 and 5); and the number of clusters for K-means (30, a mid-
dle value automatically detected by the method Section 2.1,
and 300).

Table 1 shows the means of AUCs over all feature and
parameter settings. The KL-divergence approach reports the
best mean of AUCs on the detection of Right Turn, Left Turn,
and Jay Walking 1. It is ranked No. 2 in the detection of
Jay Walking 2 event. It is important to note that, each en-
try in Table 1 (except the average column) is the mean of
19 × 5 × 4 = 380 AUCs (19 feature and parameter settings,

Fig. 2. The Events of Interest in this paper

5 folds, and 4 events). As a result, a small increment in Table
1 generally reflects an improvement. The computational time
of the algorithm depends on the feature extraction approach
used. When the KLT tracker and trajectory based features
are used with 500 keypoints tracked, a one-hour video can
be processed in less than 35 minutes 1. The detection pro-
cess using KL divergence runs very fast (similar to the naive
Bayes model), and the time can typically be ignored in prac-
tice. Therefore, our approach supports real time detection.

Table 1. The mean AUCs over all feature configurations for
each event and each learning model

Right
Turn

Left
Turn

JW 1 JW 2 mean

LDA 0.6807 0.5727 0.5895 0.5687 0.6029
LDA
BG

0.6727 0.5840 0.5853 0.5583 0.6001

SVM 0.7160 0.6490 0.5942 0.6120 0.6428
Naive
Bayes

0.7655 0.6887 0.6335 0.6460 0.6834

MIL-
CS

0.7720 0.6943 0.6195 0.6218 0.6769

KL 0.7880 0.7000 0.6402 0.6418 0.6925

4. CONCLUSION

We propose a novel method for classifying video clips based
on the presence of events using KL divergence. The pro-
posed method outperforms the state-of-the-art methods in a
real world surveillance dataset while preserving real-time de-
tection.

1Running on a single core of an Intel Xeon 2.66 GHz Processor for a
video file with the resolution of 704× 576
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