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ABSTRACT

Anomaly detection in crowded scenes is a challenge task due
to variation of the definitions for both abnormality and nor-
mality, the low resolution on the target, ambiguity of appear-
ance, and severe occlusions of inter-object. In this paper,
we propose a novel statistical framework to detect abnormal
behaviors of the crowded scene by modeling trajectories of
pedestrians. First, the trajectories are acquired by Kanade-
Lucas-Tomasi Feature Tracker (KLT). Then trajectories are
grouped to form representative trajectories, which character-
ize the underlying motion patterns of the crowd. Finally, tra-
jectories are modeled by Multi-Observation Hidden Markov
Model (MOHMM) to determine whether frames are normal
or abnormal. The experiments are conducted on a well-known
crowded scene dataset. Experimental results show that the
proposed method can capture abnormal crowd behaviors suc-
cessfully and achieves state-of-the-art performances.

Index Terms— Anomaly detection, crowded scenes, tra-
jectory cluster, Multi-Observation Hidden Markov Model,
pattern recognition

1. INTRODUCTION

Detecting abnormal activities in crowded scenes is one of the
most challenging tasks in computer vision. Videos of crowd-
ed scene present significant difficulties for detecting abnor-
malities due to the large number of pedestrians in close prox-
imity, the volatility of individual appearance, and the frequent
partial occlusions that they produce. In addition, there are po-
tential dangerous activities in crowded areas, including crowd
panic, stampedes, and accidents involving a large number of
individuals, which make automatic video analysis in the most
need.

Most methods [1, 2, 3, 4] for detecting unusual events in
video sequences are limited to the scenes with a few object-
s. Therefore, one common drawback among these methods is
they are unable to handle crowded scenes. Once the density
of objects in the scene increases, a degradation in their per-
formance in terms of unusual events detection, is observed. A
possible reason of the degradation is that they focus on repre-
senting the motion and appearance of an object or an individu-
al in scenes. In fact, the motion and appearance of individuals
change frequently in crowded scenes due to the complexity of
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crowd activities.

There are two main types of approaches for understanding
crowd behaviors. The approaches of the first type are refereed
as object-centric techniques, in which a crowd is treated as a
set of individuals [5, 6]. Hence, to understand the crowd ac-
tivities, it needs to perform segmentation or object detection.
However, these approaches face considerable complexity in
detecting objects, tracking trajectories, and recognizing be-
haviors in crowded scenes. On the other hand, the approaches
[7, 8] of the second type consider the crowd as a set of par-
ticles in analysis of high density scenes. These approaches
avoid the hard task of segmenting or tracking individuals in
crowded scene.

To detect anomaly in crowded scenes, several methods
have been proposed. Ramin Mehran et al. [9] used the social
force model, which estimates the interaction forces of mov-
ing particles, to detect unusual events. However, it can be
observed that the use of bag-of-words method may encounter
difficulty in locating anomalies. In [10], a cuboid based win-
dowing strategy is used to capture motion patterns in local ar-
eas and the unusual activities are detected as statistical devia-
tions. However, the coherently meaningful features are likely
to separate in different cuboids which may result in informa-
tion loss. Mixtures of dynamic textures (MDT) was studied
in [11] to model normal crowd behavior and outliers detected
by the model are labeled as anomalies.

In this paper, we propose a method for anomaly detection
in crowded scene by modeling trajectories, which character-
ize underlying motion information of the crowd. Differen-
t with cuboid based windowing strategy [10], trajectories of
pedestrians preserve important global motion information of
the crowd. Moreover, due to the stability of distribution of
trajectories, we can decrease the false alarm rate of detecting
unusual events. The experimental results demonstrate the pro-
posed outperform the approach based on social force model
[9]. Fig.1 shows the framework of our method.

2. METHODOLOGY

2.1. Trajectory acquirement

Trajectory, the path followed by an object moving through
space, is a high-level information in visual surveillance appli-
cations. The conventional methods that capture trajectories
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Fig. 1. The framework for anomaly detection.

of moving objects assume a static background or easily dis-
cernible moving objects, and, as a result, are limited to scenes
with relatively few objects. However, in a crowded scene,
there are hundreds of pedestrians in each frame, and possibly
thousands throughout a video. Consequently, it is a hard task
to segment and track pedestrians in crowded scene. To ac-
quire trajectories of particles in crowded scene, Wu [12] esti-
mated the positions of moving particles by optical flow. How-
ever, the trajectories may become unreliable when illumina-
tion changes. To obtain reliable trajectories, we adopt KLT
tracker [13] to track keypoints of pedestrians in the crowd-
ed scene. For a given video sequence of a crowded scene,
we first divide it into a set of clips with respect to time do-
main. Each clip can be represented by a matrix whose size
is T x W x H, where T is the number of frames, W and
H are the width and height of the frames, respectively. The
trajectory of a keypoint is represented by a vector:

a={(XL,Y)|teT}, (D

where (X, Y'") is the location of the keypoint at time . We
call the trajectory of a keypoint a keypoint trajectory. All the
keypoint trajectories of a clip are denoted by

A={ali=1,2,...N}.

2

Fig. 2. Keypoint trajectories parked on three crowded scenes
(keypoints are not shown).

2.2. Trajectory Clustering

In crowded scenes, the motion of people may be influenced
by their neighborhoods or the layout of scene, but they have
their sinks or destinations. Hence, the crowd can be divided
into several small groups whose members move coherently.
A small group may include one or more pedestrians. Fig.2
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shows the keypoint trajectories of three crowded scenes. In a
crowded scene, many trajectories may belong to a single ob-
ject, and their motion patterns are consistent with the objects.
Keypoint trajectories distributed in one or more objects may
be merged to offer a representative trajectory that describes
the potential motion pattern of the small group. To capture
the underlying motion patterns of the crowd, we apply clus-
tering to trajectories.

Before clustering trajectories, it is necessary to discard
motionless trajectories which carry little information due to
noise or tracking error. Given a trajectory set A = aiij\él, we
remove those with variance smaller than a predefined thresh-
old,

Y X =X -Y) <

3)

where X and Y are the mean of coordinate of a;. Fig.3 shows
the result after removing the motionless trajectories.

To obtain representative trajectories that describe the un-
derlying motion patterns of the crowd, we cluster the remain-
ing trajectories. To determinate an optimal number of clus-
ters, we adopt a hierarchical k-means cluster strategy. The k-
means algorithm is used by setting k to two in order to divide
the trajectories into two subsets. Then, the two subsets are
divided again into two subsets by setting k to two. The recur-
sion terminates when the inter-cluster distance of two subsets
of any level is less than a predefine threshold. The reprehen-
sive trajectory, which is defined as the one with minimum sum
of distance to all other trajectories in the same cluster, is used
to measure inter-cluster distance. By this cluster strategy, we
obtain the number of clusters and the reprehensive trajecto-
ries. Fig.4 shows an intermediate result of the trajectory clus-
tering, in which the clustering process generates 42 clusters
and each group is shown in a random color. The right column
of Fig.4 shows the zoom-in view of a part of the scene, where
the thin curves are keypoint trajectories and the thick black
curve denotes the representative trajectory of the correspond-
ing cluster.

Fig. 3. Trajectories with low variance are removed. Top row
shows zoom-in view of parts of each scene.



Fig. 4. Trajectory clusters based on spatial distance (left)
and representative trajectory (marked in black) of one group
(right).

Since representative trajectories characterize the underly-
ing motion patterns of a scene, it’s principle to use them to
model a crowded scene given a training video sequence of
usual activity. Anomalies are detected by identifying the tra-
jectories of clips with low likelihoods. In this paper, we as-
sume that trajectories are evolved from representative trajec-
tories and we model the evolution from a probabilistic per-
spective. For instance, people moves in the opposite direction
against the crowd and the likelihood of representative trajec-
tories transfer to its corresponding trajectories is considerable
low. Given a trajectory a;, we can evaluate the probability
of that it belongs to a specific representative trajectory s by
using distance measure,

1
d(a;, s) = THai—SHQ. “)

The probability of a trajectory a, given representative trajec-
tory s is
d?*(a;, s
plarls) = exp(~ T8 ®

S

where o is the variation of representative trajectory s.

2.3. Crowd Modeling

The distribution of trajectories in crowded scenes is complex
and chaotic due to the complicated mechanics of a human
crowd. In addition, the goal-directed dynamics and psycho-
logical characteristics influence how a pedestrian will behave
in a crowd [14]. The motion of unstructured crowded scenes
are more complicated than those of structured crowded scenes
[15]. To detect the anomalies in both structured and unstruc-
tured crowded scenes, we employ a Multi-Observation Hid-
den Markov Model (MOHMM) [16], whose graphic illustra-
tion is shown in Fig.5. Ordinary MOHMM are defined by five
parameters A = {N, O, T, E, 7}, where N is the number of
hidden states of the model, O is the possible symbols (values)
of observation, T is a state transition probability matrix, E is
a set of N emission probability density functions, and 7r is an
initial state distribution. We model a crowded scene with un-
usual activities by a single MOHMM. The set of possible ob-
servations O is a set of trajectories. Generally, continuous or
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complex observations are often quantized as discrete symbol-
s or values for MOHMM, however, this would significantly
discard some important motion information in each trajecto-
ry. To avoid this problem, we associate the hidden states N
with the representative trajectories. Furthermore, we use e-
quation (5) to evaluate the emission probabilities. Under this
construction allows trajectory to remain a multi-dimensional
vector.

Since the number of trajectories of each clips is not the
same, we interpolate trajectories to each clip to ensure the
number of the trajectories in each of them are equal.

To train the MOHMM, we estimated T and 7 by Baum-
Welch Algorithm. The emission densities are not re-trained
due to the equation (5) already offers a good approximation.

() (Y
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Fig. 5. Ilustration of a MOHMM. White nodes are shown as
hidden states and green nodes as observations.

2.4. Anomaly detection

The trajectory set of the video clips of normal crowded scene
are used for training the MOHMM. The normal and abnormal
events are identified based on the comparison of the current
observations probability given by the learned MOHMM. The
observation of a test video clip A is considered as anomaly if:

P(A[A) < L, (6)

where Ly, is the threshold to identify the clip is normal or
abnormal.

3. EXPERIMENTAL RESULTS

We evaluate the proposed method on the publicly available
dataset of normal and abnormal crowd videos from Univer-
sity of Minnesota [17]. The dataset comprises eleven video
sequences of three different scenarios and each video consists
of an initial part of normal behavior and ends with sequences
of abnormal panic.

To evaluate the performance of our method, each se-
quence of the three scenarios is divided into 10-frame clips as
in [9]. The trajectories of each clip are acquired by employing
KLT tracker. According to our statistics, most of trajectories
whose variance less than 0.44 carry little motion information.
hence, we choose ¢ = 0.44 for the threshold to filter out the
motionless trajectories.



For each scenario, we learn a normal model by randomly
selecting 2/3 of the normal clips as training samples. The tra-
jectories in these clips are clustered by hierarchical k-means
cluster strategy to obtain representative trajectories. since we
adopt hierarchical clustering strategy, we don’t need to de-
termine the number of clusters and we only need to choose
a threshold of inter-cluster distance for clustering. It can be
observed that the proposed method achieves the best perfor-
mance when we adopt 15 as threshold of inter-cluster dis-
tance. Then, the representative trajectories are associated with
the hidden states of MOHMM. The parameters T and 7 are
initialized uniformly and E is estimated by equation (5). S-
ince training MOHMM requires the same number of trajecto-
ries of each clip, we interpolate trajectories to let the number
of them in each clip up to 300. Fig.6 shows the trajectories
(after interpolation) of clips 30 and 61 in scenario 3.

All the rest clips (including normal and abnormal frames)
of a sequence are used for anomaly detection. We determine
whether the clips are normal or abnormal by the probabili-
ties outputted by the learned MOHMM. As an instance, Fig.7
shows the change of probability of clips of a sequence in s-
cenario 3. From Fig.8, it can be observed (between clips 59
and 65) that there is an obvious decline corresponding to an
anomaly, which agrees with the ground truth.

For performance evaluation, we compare our method with
three baseline approaches: optical flows [9], the social force
model [9] and lagrangian particle trajectory [12]. we have
reconstructed the methods of the three baselines and the com-
parison was performed on the dataset [17]. The experimen-
tal results are shown in Fig.8, which depicts that our method
achieves a higher detection accuracy than social force model
[9] and pure optical flow [9]. Moreover, the performance of
our method is slightly better than that of lagrangian particle
trajectory [12].

Fig. 6. Trajectories (after interpolation) of two clips in a se-
quence, the left shows normal behavior and the right one is
anomaly

4. CONCLUSION

In this paper, we have proposed a novel framework to detect
anomaly in crowded scenes. By modeling trajectories of the
crowd of normal activities, we identify anomalies by prob-
ability perspective. Experimental results on the well-known
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Fig. 8. The ROC curves of our method, social force model
[9], optical flow [9], and lagrangian particle trajectory [12]

dataset have demonstrated that the proposed method can im-
prove the accuracy of detecting anomalies in crowded scenes.
The drawback of the proposed method is that it can not locate
the abnormal regions in the crowded scene. we will handle
the problem in later research.
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