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ABSTRACT

We consider the application of sparse-representation and
robust-subspace-recovery techniques to detect abandoned ob-
jects in a target video acquired with a moving camera. In the
proposed framework, the target video is compared to a pre-
viously acquired reference video, which is assumed to have
no abandoned objects. The detection method explores the
low-rank similarities among the reference and target videos,
as well as the sparsity of the differences between the two
video sequences caused by the unexpected object in the tar-
get video. A three-step procedure is then presented adapting
a previous low-rank and sparse image representation to the
problem at hand. Performance of the proposed technique is
verified using a large video database for abandoned-object
detection in a cluttered environment. Results demonstrate
the technique effectiveness even in the presence of some
significant camera shake along its trajectory.

1. INTRODUCTION

Fixed surveillance cameras for monitoring purposes are ubiq-
uitous in today’s world. Inspection of the acquired content,
however, is highly inefficient when it depends on direct hu-
man supervision, particularly when a large number of cam-
eras must be continuously monitored. This is so because,
among other things, such an activity can be tedious and
error-prone. To alleviate this problem, automatic anomaly-
detection techniques have been proposed to substitute or
complement the human-based detection task [1, 2].

Visual-surveillance systems based on computer-vision
techniques constitute a trendy research topic due to is inher-
ent difficulty, as it depends on both the searched anomaly and
the environment complexity. In addition, some monitoring
activities may require several viewpoints for an efficient in-
spection, particularly within a cluttered environment where
there may be uncontrolled occlusions. In these situations,
pose-changing or wide-angle cameras may not provide an
acceptable solution. An interesting alternative to multiple
cameras is the use of a single camera mounted on a moving
(robotic) platform.

Sparse representations have been successfully used in
problems which involve high-dimensional signals with low-
dimensional representation models, such as face recogni-
tion [3, 4, 5] and background subtraction when static surveil-
lance cameras are used [6]. In this paper we investigate how
these techniques can be adapted to detect abandoned objects

within a video sequence acquired by a moving surveillance
camera. In the proposed framework, an initial representation
is determined for the reference video, that we consider to
have no abandoned objects. On a second step, this represen-
tation is employed to model the target video. Assuming pure
translational movement, every object present in both videos
is properly modeled by the initial representation, irrespective
of any temporal misalignment between the two sequences.
On the other hand, the abandoned objects cannot be mod-
eled properly, since they are only found in the target video,
appearing as a residue in this representation process.

In order to introduce the proposed abandoned object de-
tection scheme, this paper is organized as follows: Section 2
describes the video database employed to assess the perfor-
mance of the proposed abandoned-object detection system.
Section 3 revisits the so-called robust subspace recovery
(RoSuRe) algorithm [7], whereas Section 4 considers its pro-
posed adaptation to the object-detection problem of interest.
Finally, Section 5 summarizes the results achieved with the
proposed formulation, and Section 6 concludes the paper
emphasizing its main contributions.

2. ABANDONED OBJECT SCENARIO

In this work, the abandoned-object detection problem is as-
sessed using an existing video database with several record-
ings of a complex industrial-like environment [8, 9]. The
database was acquired with a rigid camera mounted on a
robotic iRobot Roomba platform with a back-and-forth lin-
ear movement on a 6m-long hanging rail. Two different IP
cameras were employed, having the same 1280 × 720-pixel
resolution and a frame rate of 24 frames per second. An
industrial environment was considered, comprised of several
pipes and valves. Twenty four distinct abandoned objects
were employed in the recordings, which total approximately
8.2 hours of video. This database, along with the annotations
of the abandoned objects, can be downloaded from [9].

In this database, the recordings were divided into two
groups - reference and target sequences, as exemplified in
Fig. 1. The reference sequences have no abandoned objects,
as validated by human supervision, while the target sequences
contain one or more objects to be detected automatically by
the proposed algorithm. Due to track imperfections and
mechanical friction with the robot wheels, the captured se-
quences present considerable camera shake, which poses an
additional challenge to the detection scheme.
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(a)

(b)

Fig. 1. Example of video frames from the database in [9]:
(a) Reference frame; (b) Target frame with the pink bottle on
the top right as an abandoned object.

3. ROBUST SUBSPACE RECOVERY
Recent works (e.g. [10]) have shown that traditional tools for
dimensionality reduction, such as principal component analy-
sis (PCA), can yield incorrect results in the presence of mea-
surement errors and noise, which are quite common in real
data. To address this problem, solutions like robust PCA [10]
(RPCA) have been proposed. If X = [x1x2 . . . xn] is a data
matrix where each column xi is a sample vector in Rm, the
RPCA decomposes X as X = L+E, where L is a low-rank
data matrix and E is an sparse error matrix. RPCA can be
effective in cases where the data can be modeled as belonging
to a single low-rank subspace. However, in the more general
case where the data can only be modeled as lying in a union
of multiple subspaces (UoS) [11, 12] the RPCA can lead to
incorrect model recovery.

Such case is addressed by the robust subspace recovery
(RoSuRe) algorithm [7], which represents the data matrix as

X = LW + E, (1)

where L = [L1| . . . |Lk] denotes the union of subspaces, each
Lj being a representative sampling matrix of a subspace Sj ,
and W is a sparse block-diagonal matrix such that LW = L,
with Wii = 0. The RoSuRe algorithm assumes the sparsity
of both W and E matrices [7] to obtain the representation in
Eq. (1). It does so by solving the non-convex optimization
problem

min
W,E
||W ||1+λ||E||1, s.t. X = L+E,LW = L,Wii = 0,

(2)

using the augmented Lagrangian multiplier method with the
augmented Lagrangian function [7]

L(W,E, Y, µ) =

||W ||1 + λ||E||1 + 〈LW − L, Y 〉+
µ

2
||LW − L||2︸ ︷︷ ︸

f(W,E)

, (3)

where f is the differential part of L, which is bilinear in W
and E. Note that L is redundant and could be replaced by
(X−E) in f . Using the soft-threshold operator τα and letting
Ŵk = I −Wk, one can define the update steps of W and E
such as [7]:

Wk+1 = argmin
W
||W ||1 + f(W,E)

= τ λ
µη1

[
Wk −

1

η1
∇W f(Wk, Ek)

]
= τ λ

µη1

[
Wk +

1

η1
LTk+1

(
Lk+1Ŵk −

Yk
µk

)]
, (4)

Ek+1 = argmin
E

λ||E||1 + f(W,E)

= τ 1
µη2

[
Ek −

1

η2
∇Ef(Wk+1, Ek)

]
= τ 1

µη2

[
Ek +

1

η2

(
Lk+1Ŵk+1 −

Yk
µ

)
ŴT
k+1

]
, (5)

where η1 ≥ ||L||22 and η2 ≥ ||Ŵ ||22, as summarized in Algo-
rithm 1.

Algorithm 1 - Robust Subspace Pursuit (RoSuRe) [7].
Input: X,λ, ρ > 1, η1, η2
while not converged do

Lk+1 = X − Ek
Wk+1 = τ λ

µη1

[
Wk +

1
η1L

T
k+1

(
Lk+1Ŵk − Yk

µk

)]
(Wk+1)ii = 0

Ŵk+1 = I −Wk+1

Ek+1 = τ 1
µη2

[
Ek +

1
η2

(
Lk+1Ŵk+1 − Yk

µk

)
ŴT
k+1

]
Yk+1 = Yk + µk (Lk+1Wk+1 − Lk+1)
µk+1 = ρµk

end

4. ROSURE MODIFICATION FOR THE MOVING
CAMERA CASE

The basic assumption underlying the proposed modification
is that the moving surveillance camera is sufficiently slow.
This way, adjacent video frames can be considered suffi-
ciently similar to share the same low-rank representation. In
this scenario, let Xr be a data matrix such that each column
is a reference video frame. We start by decomposing Xr

according to Eq. (1) using the RoSuRe algorithm, that is,
Xr = LrWr+Er. Lr is the low-rank linear part of the refer-
ence video andEr = (Xr−Lr) is its non-linear complement,
that provides a sparse error signal.
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Algorithm 2 - Sparse representation of X given the low-rank
representation L.

Input: L,X, λ, ρ > 1, η1, η2
while not converged do

L′
k+1 = X − Ek

Wk+1 = τ λ
µη1

[
Wk − 1

η1
LT
(
LWk − L′

k+1 +
Yk
µk

)]
Ek+1 = τ 1

µη2

[
Ek − 1

η2

(
LWk+1 − L′

k+1 +
Yk
µk

)]
Yk+1 = Yk + µk

(
LWk+1 − L′

k+1

)
µk+1 = ρµk

end

Assuming that the target frame sequence Xt shares the
same low-rank structure with its reference counterpart, one
can rewrite the low-rank part of Xt as a combination of the
linear low-rank information of the reference sequence plus an
error signal. In other words, one can find a Wt matrix, such
that target-video matrix can be written as Xt = LrWt + Et,
with both Wt and Et as sparse matrices. Using this descrip-
tion, all anomalies in Xt, such as an abandoned object, are
encapsulated into Et. In order to perform this alternate rep-
resentation of Xt, taking advantage of Lr determined in the
sparse representation of Xr, the RoSuRe algorithm must be
modified to work with a given fixed low-rank term Lr. To do
so, the cost function in Eq. (2) should be modified to

min
E,W

= ||W ||1 + λ||E||1 s.t. LrW = X − E, (6)

and, following equation (3), the augmented Lagrangian func-
tion becomes

L′(E,W, Y, µ) = ||W ||1 + λ||E||1
+ 〈LrW −X + E, Y 〉+ µ

2
||LrW −X + E||2︸ ︷︷ ︸

g(W,E)

. (7)

In a similar way to f in Eq. (3), g is the smooth part of the
Lagrangian and will be used to compute the update steps of
Wk and Ek as follows:

Wk+1 = argmin
W
||W ||1 + g(W,E)

= τ λ
µη1

[
Wk−

1

η1
∇W g(Wk, Ek)

]
= τ λ

µη1

[
Wk−

1

η1
Lr

T

(
LrWk−X+Ek+

Yk
µk

)]
, (8)

Ek+1 = argmin
E

λ||E||1 + g(W,E)

= τ 1
µη2

[
Ek−

1

η2
∇Eg(Wk+1, Ek)

]
= τ 1

µη2

[
Ek−

1

η2

(
LrWk+1−X+Ek+

Yk
µ

)]
, (9)

as summarized in Algorithm 2.
Summing it up, in the proposed abandoned-object detec-

tion algorithm, we first perform Algorithm 1 to decompose

Xr into a low-rank data matrix Lr and its sparse, non-linear
complement Er, such that

Xr = LrWr + Er. (10)

Second, we use the low-rank Lr matrix obtained in Eq. (10)
as the input L for Algorithm 2 to decompose Xt into

Xt = LrWt + Et. (11)

As mentioned before, this procedure tends to isolate in
Et all the target-sequence information that is not present in
Lr (or Xr). However, besides the residual generated by the
abandoned-object, Et will also have the sequence’s high fre-
quency information that could not be captured by the low-
rank representation LrWt. The abandoned-object informa-
tion contained in Et can be separated from its inherent high
frequency information by noting that, as Xt and Xr are sim-
ilar by assumption, Et will in general look quite similar to
Er, except around the abandoned object. Therefore, we also
perform a third and last step, decomposingEt usingEr as the
input dictionary L of Algorithm 2, yielding

Et = ErW + E. (12)

The remaining sparse errorE tends to contain, as desired, just
the abandoned objects in Xt not present in Xr, as illustrated
in Section 5.

5. EXPERIMENTAL RESULTS
The proposed strategy was tested for several video sequences
from the database presented in [8] and available from [9]. In
our experiments, the video sequences were spatially subsam-
pled to 320×180 pixels. In order to guarantee a proper repre-
sentation of the target video sequence using the low-rank ap-
proximation of the reference video, we have to guarantee that
all frames of the target video sequence have a corresponding
frame in the reference video sequence. One way of guaran-
teeing this is to make sure that the reference video contains at
least one complete turn of the camera through the surveillance
area. In case there are computational complexity limitations
and a complete surveillance turn of the reference video cannot
be processed, one can follow a divide-and-conquer approach.
We do so by segmenting both the reference and target videos
with the care that each segment of the reference sequence con-
tains all the corresponding frames of the target sequence.

Results for four different abandoned-object situations are
illustrated in Fig. 2. In each case, a 70-frame reference se-
quence is used to model a 50-frame target sequence contained
within the reference sequence. In all steps, the representation
Algorithms 1 and 2 employed λ = 1 and ρ = 1.5.

In this figure, each column represents a given experiment
and each row shows a sample frame of the matrices described
in equations (10), (11), and (12). Error matrices are visualized
in terms of their absolute values, and the last row contains the
objects and other differences detected in each of the target
frames shown in the second row. One can see that the pro-
posed method can detect the abandoned objects while having
very few false positives. Illumination changes, as well as ma-
jor camera misalignments, may also lead to false positives.
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(a) (b) (c) (d)

Fig. 2. Experimental results (single frames of matrices Xr, Xt, Lr, Er, Et, and E) using proposed low-rank representation for
4 different abandoned-object scenarios: (a) pink bottle; (b) backpack + wrench + box; (c) backpack + green box + mug + string
roll; (d) umbrella + bottle + bottle cap + mug.

False negatives may occur if the abandoned object has the
same pixel intensities as the background, as seen in the mid-
dle of the wrench in the second experiment (Fig. 2b). Most
of these artifacts, however, can be removed by a simple post-
processing such as median filtering.

It is important to note that the proposed method can even
detect the object shadows, as verified on the left of each bottle
in the first and fourth experiments (Fig. 2a and Fig. 2d).

6. CONCLUSIONS

We have presented a new approach for detecting changes in
moving camera captured videos sequences by applying sparse
representations based on the RoSuRe technique. We use the
RoSuRe algorithm three times. In the first pass, the reference
video is decomposed using the RoSuRe algorithm. In the sec-
ond pass, the target sequence is decomposed based on the

low-rank reference component determined in the first pass.
In the third and last pass, the sparse error of the first pass is
used as the low-rank component to represent the second-pass
sparse error. Following this strategy, the sparse error of this
last pass tends to contain only the abandoned objects, being
free from the high frequency components inherent to the two
video sequences. The results are promising and the method
performs very well for all the examples, with the advantage
of alleviating the need of geometric registration, needing only
a very loose video synchronization. The presented results are
very encouraging and promise a true viability of a deployable
system of change detection methods for moving cameras us-
ing the proposed framework.
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