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ABSTRACT

In this paper we propose a way to improve the K-SVD image
denoising algorithm. The suggested method aims to reduce
the gap that exists between the local processing (sparse-
coding of overlapping patches) and the global image recovery
(obtained by averaging the overlapping patches). Inspired by
game-theory ideas, we define a disagreement-patch as the
difference between the intermediate locally denoised patch
and its corresponding part in the final outcome. Our algo-
rithm iterates the denoising process several times, applied
on modified patches. Those are obtained by subtracting the
disagreement-patches from their corresponding input noisy
ones, thus pushing the overlapping patches towards an agree-
ment. Experimental results demonstrate the improvement this
algorithm leads to.

Index Terms— Image restoration, denoising, disagree-
ment, sparse representation, K-SVD.

1. INTRODUCTION

Denoising is a central and long studied problem in image pro-
cessing. Consider a degradation model of the form

y = x+ v, (1)

where y is a noisy image (measurement), x is a clean image,
and v is a zero-mean additive Gaussian noise (uncorrelated
to x), all of size r × c. The denoising process seeks for an
approximation x̂ of the unknown signal x. Note that x, y and
v are held as column vectors after lexicographic ordering.

Patch processing has become popular in recent years.
Many state-of-the-art denoising algorithms, which are build
upon different image models, are essentially patch-based,
e.g., the NLM [1], K-SVD [2], BM3D [3], LSSC [4], and
others [5–7]. In this paper we give a special attention to the
K-SVD image denoising [2], which restores the image using
an adaptive sparsity model imposed on its patches [8,9]. This
model has been shown to be very effective in predicting the
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underlying signal. It assumes that each image patch can be
represented as a sparse linear combination of basis elements
(called ”atoms”) from a dictionary.

The gap between the local processing and the global
need for a whole restored image is a major disadvantage of
patch-processing in general, and the K-SVD denoising (and
similar algorithms) in particular. More specifically, the K-
SVD cleans the input image by breaking it into overlapping
patches, restoring each patch using an adaptive sparsity model
(local processing), and then reconstructing the full image by
averaging the overlapping patches (the global need). As such,
the denoising process is somewhat lacking – it estimates the
clean patches independently while disregarding their inter-
relations, overlooking the fact that these patches are sharing
the very same pixels on the overlaps.

Motivated by this observation, series of recent papers
came to close or at least narrow this local-global gap. Here
we shall concentrate on several such techniques, designed
specifically for the K-SVD. Our earlier work [10] suggests
an iterative algorithm for improving the K-SVD [2]. The
improvement is obtained by extracting the ”stolen” image
content from the method-noise (the difference between the
noisy image and its denoised version) image and then adding
it back to the initial estimate. The approach in [10] sug-
gests representing the stolen image content with the very
same atoms used for the denoising of the patches. While this
approach yields an improvement to the K-SVD, an evident
shortcoming of it is the fact that it treats only part of the cause
for deteriorated denoising performance. Another source of
error is noise remaining in the denoised result, which [10]
does not address at all.

From a different perspective, the work in [11] builds upon
the EPLL framework [12], also treating the local-global gap.
Sparsity-inspired EPLL encourages the patches of the global
image (obtained by patch-averaging) to comply with the local
sparsity prior. This is done by sequentially denoising the im-
age with an assumption that the noise power is diminishing.
The main challenge in this method is the need to evaluate the
remaining (non-white) noise level in the filtered image, which
is crucial for a successful deployment of the EPLL technique.

Naturally, a multi-scale framework can reduce the arti-
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Fig. 1. A Block diagram of the proposed algorithm.

facts (especially for large smooth areas) that originates from
the local patch-processing. The work in [13, 14] suggests a
global MAP estimator for the denoised image in the wavelet
domain. The core idea is to apply the K-SVD denoising per
band, i.e., denoise the corresponding wavelet coefficients.
Then, in a final stage, improved results are obtained by fusing
the single-scale (original K-SVD) and multi-scale estima-
tions.

Considering the similarity between image patches can
also reduce the local-global gap. The LSSC [4] denoising
combines the adaptive sparsity prior with the exploitation of
non-local proximities. The latter assumes that each image
patch may have similar patches within the image. Differently
from the original K-SVD algorithm, which finds the repre-
sentation of each patch independently, the LSSC finds the
joint representation of a group of similar patches. As such,
it considers not only the structure of the patches, but also the
inter-relations between them. As such, this algorithm bares
some resemblance to BM3D [3]. We should note, though, that
despite the more effective local treatment, BM3D and LSSC
both find themselves eventually averaging patches that ex-
hibit disagreement, thus suffering from the same local-global
problem, even if to a lesser extent.

In this paper we address the local-global gap in a different
way from the above algorithms, and we focus our attention
on the K-SVD image denoising [2]. Note that a similar ap-
proach can be deployed to other patch-based image denoising
algorithms [1,3–5,11,12]. First, we define the ”disagreement
patch” – the difference between the local (intermediate) de-
noised result and the corresponding patch from the global (fi-
nal) outcome. Due to the independent processing of the image
patches, such disagreement naturally exists. Next, we suggest
”sharing the disagreement” between the overlapping patches.
As shown in Fig. 1, this is done by repeating the following
procedure: (i) compute the disagreement per patch, (ii) sub-
tract the disagreement from the noisy input patches, (iii) apply
the K-SVD denoising on these patches, and (iv) reconstruct
the global image. As a consequence, the proposed algorithm
pushes the overlapping patches to share their local informa-
tion (disagreements), thereby reducing the gap between the
local processing and the global outcome.

This paper is organized as follows: In Section 2 we pro-
vide brief background on sparse representation and dictionary
learning, concentrating on the K-SVD denoising. In Section
3 we introduce our novel ”sharing the disagreement” algo-
rithm. Experiments are detailed in Section 4, demonstrating

the achieved improvement to the K-SVD denoising. Conclu-
sions and future research directions are given in Section 5.

2. BACKGROUND

In this section we bring a brief discussion on sparse represen-
tations and the K-SVD image denoising algorithm [2, 8, 9].

2.1. Sparse-Land Modeling and K-SVD Denoising

Sparsity-inspired algorithms assume that a signal (or an image
patch in our case), denoted by x ∈ Rn, can be represented as
a sparse linear combination of dictionary atoms. As a result,
the signal can be expressed by x = Dα, where the dictio-
nary D ∈ Rn×m is composed of m ≥ n atoms (leading to
redundancy), and the vector α ∈ Rm contains a few non-zero
elements.

More specifically, given a noisy measurement y, estimat-
ing the underlying signal x̂ can be done by estimating α̂ – the
projection of y onto the set of low dimensional subspaces that
D spans (up to an error bound ϵ). Then, the denoised signal
is obtained by x̂ = Dα̂. Put formally, given D and ϵ, we seek
for α̂, the solution of

α̂ = min
α
∥α∥0 s.t. ∥Dα− y∥22 ≤ ϵ2, (2)

where ∥α∥0 counts the non-zero entries in α. Equation (2) is
an NP-hard problem, thus, in practice α̂ is approximated by
pursuit algorithms (e.g. OMP [15] as done in the K-SVD [2]).

An adaptation of the dictionary to the input may result in a
sparser representation, compared to a fixed dictionary (for the
same ϵ), thus leading to a better noise reduction. Given sev-
eral noisy signals {yi}Ni=1, and their representations {α̃i}Ni=1,
the K-SVD suggests updating the dictionary by solving

[
D̂, {α̂i}Ni=1

]
= min

D,{αi}N
i=1

N∑
i=1

∥Dαi − yi∥22 (3)

s.t. Supp{αi} = Supp{α̃i},

where the resulting D̂ is the updated dictionary, and Supp{α̃i}
are the indices of the non-zero elements in α̃i. As such, the
K-SVD adapts the dictionary to the measurements by alter-
nating between sparse-coding (i.e. solving Equation (2) for
each example) and dictionary-update (i.e. solving Equation
(3)). This process is known as ”Dictionary Learning”.

In practice, sparsity-inspired algorithms are limited in
handling relatively small signals. As a consequence, the K-
SVD image denoising breaks the noisy image into

√
n×
√
n

overlapping patches, cleans these patches by iterating Equa-
tions (2) and (3), and then reconstructs the whole image by
returning the denoised patches to their locations. As a final
step, the K-SVD merges the denoised and noisy images by
applying a weighted average. All this process approximates
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the solution of the following expression:[
x̂, D̂, {α̂i}Ni=1

]
= min

x,D,{αi}N
i=1

µ∥x− y∥22 +
N∑
i=1

∥αi∥0 (4)

s.t. ∀i ∥Dαi −Rix∥22 ≤ ϵ2,

where N denotes the number of image patches, and the matrix
Ri ∈ Rn×rc extracts the ith patch from the global image.

3. THE PROPOSED ALGORITHM

As mentioned in section 2, the K-SVD denoising [2] (and
similar algorithms) breaks the noisy image into overlap-
ping patches, and cleans each patch independently. Since
the global image is more than a collection of independent
patches, this treatment is somewhat lacking. Furthermore, the
final image is obtained by a simple patch averaging, without
considering the shared estimations on the overlaps.

Motivated by the game-theory concepts in general, and
the ”consensus and sharing” problem [16] in particular, the
proposed algorithm aims to narrow the local-global gap by
encouraging the overlapping patches to influence each other.
More specifically, the ”consensus” problem involves the min-
imization of a single global variable (the denoised image),
where the objective and constraint terms split into N parts
(the recovery of the overlapping patches). In addition, the
closely related ”sharing” problem involves the adjustment of
local variables to minimize their own (local) cost function, as
well as the shared (global) objective. Following these ideas,
the proposed iterative method drives the overlapping patches
towards an agreement by sharing the neighbors disagree-
ments, thus called ”sharing the disagreement”.

In the context of the K-SVD denoising, we define the
”disagreement-patch” as

qk
i = Dkαk

i −Rix̂
k, (5)

where Dkαk
i is the ith locally denoised result, and Rix̂

k

is the corresponding part from the global estimate, both ob-
tained at the kth iteration. As a reminder, the sparse-coding
step does not consider the relations between the patches, thus
the energy of qi is not negligible in general. Next, we en-
courage the overlapping patches to collaborate by modifying
the input patches to the next denoising stage. This is done
by subtracting qi from Riy, and then applying the K-SVD
algorithm on these patches (including the image reconstruc-
tion). In practice, as detailed in Algorithm 1, we repeat this
procedure several times.

Still following Algorithm 1, the new input patch can be
expressed by

pk
i = Riy − qk

i (10)

= Riy − (Dkαk
i −Rix̂

k)

= Rix̂
k + rki ,

Algorithm 1 : Sharing the disagreement.
Initialization:

1: Assign k = 0, and q0
i = 0.

2: D0 – an initial dictionary.
Repeat

1: Sparse-Coding Step: Using the OMP [15], solve[
{α̂k+1

i }Ni=1

]
= (6)

min
{αi}N

i=1

N∑
i=1

∥αi∥0 s.t. ∀i ∥Dkαi − (Riy − qk
i )∥22 ≤ ϵ2.

2: Dictionary-Update Step: Solve

[Dk+1,{αk+1
i }Ni=1] = (7)

min
D,{αi}N

i=1

N∑
i=1

∥Dαi − (Riy − qk
i )∥22

s.t. Supp{αi} = Supp{α̂k+1
i }.

In practice, given Dk, we obtain Dk+1 using the K-SVD.
3: Image Reconstruction Step: Solve

x̂k+1 = min
x

∑
i

∥Dk+1αk+1
i −Rix∥22 + µ∥x− y∥22.

(8)

The outcome of this term leads to a simple averaging
of the denoised patches on the overlaps, followed by a
weighted average with the noisy image.

4: Disagreement-Update Step: Compute

qk+1
i = Dk+1αk+1

i −Rix̂
k+1, (9)

and set k ← k + 1.
Until

Maximum quality is obtained, else return to ”Sparse-
Coding Step”.

Output
x̂k – the last result.

where rki = Riy − Dkαk
i represents the ith local method-

noise patch, obtained at the kth iteration. As can be inferred,
our algorithm aims to recover a patch from the global estima-
tion x̂k, corrupted by the method-noise patch rki . Therefore,
”sharing the disagreement” reduces the local-global gap in a
different way compared to the EPLL [11, 12], which itera-
tively cleans the previous estimation, without considering the
signal that resides in the method-noise image. In addition, this
approach is different from our earlier work [10], which cleans
the method-noise image and does not consider the noise that
remains in the denoised image. A unique property of the new
algorithm, when compared to earlier work, is the fact that it
harnesses intermediate patch-denoising results, that are inner
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σ σ̂
Barbara Boat House Fingerprint Peppers Couple Average

Orig New Orig New Orig New Orig New Orig New Orig New New
10 1.12σ 34.55 34.55 33.63 33.70 36.06 36.09 32.37 32.40 34.81 34.83 33.57 33.69 0.05
20 1.06σ 30.86 31.03 30.40 30.62 33.16 33.37 28.48 28.65 32.31 32.42 30.05 30.31 0.19
25 1.06σ 29.61 29.88 29.31 29.58 32.30 32.62 27.29 27.51 31.50 31.61 28.96 29.29 0.25
50 1.04σ 25.38 26.12 25.92 26.36 27.93 28.69 23.31 23.98 28.16 28.58 25.28 25.80 0.59
75 1.02σ 22.89 23.53 23.94 24.45 25.22 25.96 20.00 21.49 25.80 26.36 23.65 24.10 0.73
100 1.02σ 21.83 21.99 22.86 23.16 23.63 24.29 18.28 19.55 24.26 24.76 22.63 22.88 0.52

Table 1. Comparison between the denoising results [PSNR] of the original K-SVD algorithm [2] and its ”sharing the disagree-
ment” outcome (Algorithm 1). The best results per each image and noise level are highlighted.

to the K-SVD algorithm’s architecture.

4. EXPERIMENTS

In this section, we present detailed results of the proposed
method for several noise levels and test images (Barbara,
Boat, Fingerprint, House, Peppers, and Couple). These
images are corrupted by an additive zero-mean Gaussian
noise with a standard-deviation σ. We evaluate the denoising
performance using the Peak Signal to Noise Ratio (PSNR),
defined as 20 log10(

255√
MSE

), where MSE is the Mean Squared
Error between the original image and its denoised version.

The proposed ”sharing the disagreement” algorithm does
not involve any additional parameters over the original K-
SVD denoising [2] parameters. However, we found that using
σ̂, a higher noise energy than σ, leads to better performance.
This originates from the noise energy of Rix̂

k+ri (see Equa-
tion (10)), which might be larger than σ. As such, we have
tuned the parameter σ̂ per each noise level σ. The denoising
results of Table 1 are obtained by applying Algorithm 1 for
30 iterations, where each iteration includes 2 sparse-coding
and dictionary-update steps. In addition, the initial dictionary
is obtained by applying 20 iterations of the K-SVD algorithm
(leading to what is referred to in the table as ’Orig’ results).

Following Table 1, in terms of PSNR, ”sharing the dis-
agreement” algorithm improves the original K-SVD denois-
ing [2] for all images and noise levels (especially for large σ).
Visually, according to Fig. 2, the proposed method improves
the recovery of edges, as shown in (a,b), and texture areas, as
demonstrated in (c,d). In addition, the visual improvements
are consistent with the PSNR increase.

We should note that the gain achieved by the proposed
method is of similar extent to the other boosting techniques
mentioned [4, 10–14]. Moreover, as a future study, it is inter-
esting to combine our method with the above techniques.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a new algorithm termed ”sharing the disagree-
ment”, which aims to improve the restoration performance of
the K-SVD denoising [2]. The core idea behind our approach
originates from game theory and consensus methods. When

(a) K-SVD, PSNR = 30.88dB (b) Algorithm 1, PSNR = 31.43dB

(c) K-SVD, PSNR = 28.56dB (d) Algorithm 1, PSNR = 29.59dB

Fig. 2. Visual and PSNR comparisons between the K-
SVD denoising and ”sharing the disagreement” outcomes for
cropped regions from the images (a,b) Couple with σ = 20
and (c,d) Barbara with σ = 25.

overlapping patches are treated separately, they naturally dis-
agree on the final result. We take this disagreement and add it
back to each of the patches in such a way that they are encour-
aged to get closer to an agreement in a consequent denoising
stage. Our method does not require any additional parameters
or internal modifications to the original K-SVD algorithm.

In a follow-up paper [17] we generalize the patch-
disagreement formulation discussed here, and show that it
leads to an overall algorithm that can treat the given denois-
ing method as a ”black-box”. The work in [17] also studies
the convergence properties of the resulting algorithm, and
deploys it to a series of leading denoising methods, showing
for each a gain in performance. As a future work, we hope
to propose a similar scheme for improving other restoration
tasks (e.g. [18–20]).

1283



6. REFERENCES

[1] A. Buades, B. Coll, and J.-M. Morel, “A review of
image denoising algorithms, with a new one,” Multi-
scale Modeling & Simulation, vol. 4, no. 2, pp. 490–530,
2005.

[2] M. Elad and M. Aharon, “Image denoising via sparse
and redundant representations over learned dictionar-
ies,” IEEE Tran. on Image Proc., vol. 15, no. 12, pp.
3736–3745, 2006.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Im-
age denoising by sparse 3-D transform-domain collabo-
rative filtering,” IEEE Trans. on Image Proc., vol. 16,
no. 8, pp. 2080–2095, 2007.

[4] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisser-
man, “Non-local sparse models for image restoration,”
in Int. Conf. on Computer Vision. IEEE, 2009, pp. 2272–
2279.

[5] G. Yu, G. Sapiro, and S. Mallat, “Solving inverse prob-
lems with piecewise linear estimators: from gaussian
mixture models to structured sparsity,” IEEE Trans. on
Image Proc., vol. 21, no. 5, pp. 2481–2499, 2012.

[6] H. C. Burger, C. J. Schuler, and S. Harmeling, “Im-
age denoising: Can plain neural networks compete with
BM3D?,” in IEEE Conf. on Computer Vision and Pat-
tern Recog., 2012, pp. 2392–2399.

[7] I. Ram, M. Elad, and I. Cohen, “Image processing using
smooth ordering of its patches,” IEEE Trans. on Image
Proc., vol. 22, no. 7, pp. 2764–2774, 2013.

[8] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From
sparse solutions of systems of equations to sparse mod-
eling of signals and images,” SIAM review, vol. 51, no.
1, pp. 34–81, 2009.

[9] M. Elad, Sparse and redundant representations: from
theory to applications in signal and image processing,
Springer, 2010.

[10] Y. Romano and M. Elad, “Improving K-SVD denoising
by post-processing its method-noise,” in IEEE Int. Conf.
on Image Proc., Sept 2013, pp. 435–439.

[11] J. Sulam and M. Elad, “Expected patch log likeli-
hood with a sparse prior,” in submitted to Energy-
Minimization-Methods workshop, Hong-Kong, January
13-16 2015.

[12] D. Zoran and Y. Weiss, “From learning models of natu-
ral image patches to whole image restoration,” in IEEE
Int. Conf. on Computer Vision, 2011, pp. 479–486.

[13] J. Sulam, O. Boaz, and M. Elad, “Image denoising
through multi-scale learnt dictionaries,” in IEEE Int.
Conf. on Image Proc. IEEE, 2014.

[14] B. Ophir, M. Lustig, and M. Elad, “Multi-scale dictio-
nary learning using wavelets,” Selected Topics in Signal
Proc., vol. 5, no. 5, pp. 1014–1024, 2011.

[15] Y. C. Pati, R. Rezaiifar, and PS Krishnaprasad, “Or-
thogonal matching pursuit: Recursive function approxi-
mation with applications to wavelet decomposition,” in
Conf. Record of The 27 Asilomar Conf. on Signals, Sys-
tems and Computers. IEEE, 1993, pp. 40–44.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Founda-
tions and Trends R⃝ in Machine Learning, vol. 3, no. 1,
pp. 1–122, 2011.

[17] Y. Romano and M. Elad, “SOS boosting of image de-
noising algorithms,” submitted to SIAM Journal on
Imaging Sciences, 2015.

[18] R. Zeyde, M. Elad, and M. Protter, “On single image
scale-up using sparse-representations,” in Curves and
Surfaces, pp. 711–730. Springer, 2012.

[19] R. Giryes and M. Elad, “Sparsity based Poisson denois-
ing with dictionary learning,” to appear in IEEE Trans.
on Image Proc., 2014.

[20] Y. Romano, M. Protter, and M. Elad, “Single image
interpolation via adaptive nonlocal sparsity-based mod-
eling,” IEEE Trans. on Image Proc., vol. 23, no. 7, pp.
3085–3098, 2014.

1284


