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ABSTRACT

Baseline nonlocal means denoising scheme may be improved
by incorporating more adaptivity, like locally varying filter-
ing window, smoothing constants and patch size or shape.
In this paper, we presents a novel adaptive nonlocal means
filtering scheme, the key idea of which is that before com-
puting the similarity between two pixels, active matching is
performed to determine optimally matched patch shape and
size. Systematic analysis and detailed simulation results show
that the proposed algorithm achieves excellent trade-off be-
tween bias and variance, and obtains superior denoising per-
formance compared with the state of the art.

Index Terms— Nonlocal means, active matching, local
polynomial approximation (LPA), intersection of confidence
interval (ICI)

1. INTRODUCTION

Image denoising is widely considered as one of the most fun-
damental low-level vision problems. Besides its evident prac-
tical significance, image denoising is also an ideal test bed for
evaluating the regularization efficacy of image models.

In terms of the corresponding operation domain, image
denoising schemes may be roughly categorized into two
classes: spatial domain methods and transform domain meth-
ods. Most spatial domain image denoising algorithms can
be essentially cast in the adaptive kernel regression frame-
work [1], among which nonlocal means (NLM) [2] represents
relatively new development.

The novelty of NLM is twofold. First, NLM explicitly
introduces the nonlocal filtering paradigm to exploit the long-
range self-similarity of natural images, while most of its pre-
decessors focus on local smoothing (although in practice the
distinction is not so clear-cut). Second, NLM determines the
similarity between image pixels and filtering weights solely
based on patch information around the corresponding pixel-
s. Both of these are strongly inspired by the success of the
nonparametric texture synthesis techniques [3] and have in
turn given birth to a flurry of so called nonlocal patch-based
restoration algorithms, with BM3D [4] being the most well-
known.
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Despite its popularity, NLM is far from being opti-
mal. While there have been theoretical analysis of the
sub-optimality of baseline NLM scheme [5], intuitively this
sub-optimality could be attributed partly to its weak adap-
tivity. In fact, the efforts to incorporate more adaptivity into
NLM framework have constituted the bulk of post-Buades
NLM-related research. Kervrann and Boulanger [6] applied
adaptive smoothing theory to NLM, to make filtering window
adaptive with respect to local image characteristics. Duval et
al. [7] explored the possibility of smoothing constants adap-
tivity based on local SURE. Deledalle et al. [8] considered
replacing the usual square patch with various shapes to take
advantages of local image geometry. Specifically, they com-
bined estimates associated with various shapes to achieve
patch adaptivity, with local combination weights determined
by SURE minimization. Salmon et al. [9] advocated patch-
wise NLM + reprojection denoising paradigm to alleviate the
rare patch effect of original NLM. This can also be considered
as a kind of patch shape adaptivity, namely using decentered
square patch rather than the usual centered counterpart. The
same authors also proposed to globally combine two esti-
mates corresponding to different patch sizes, which may be
seen as a weak form of patch size adaptivity.

In this paper, we are concerned only with the issue of
patch adaptivity, that is, making patch size and shape adapt
to local image geometry. However, unlike previous works
mentioned above, we take a novel active matching approach.
Specifically, before estimating the similarity between two
pixels we first perform active matching to arrive at optimally
matched patch size and shape. Bearing in mind that on-
ly noisy image is given, we carefully design the matching
scheme based on LPA-ICI criterion [10]. Simulation results
confirm the effectiveness of the proposed approach.

The rest of the paper is organized as follows. Section 2
introduces the principle of baseline NLM and illustrates the
need for patch adaptivity and active matching. Section 3 out-
lines the practical active matching-based NLM denoising al-
gorithm tailored for noisy input. Experimental results are giv-
en in Section 4 to prove the superiority of the new denoising
scheme. We conclude the paper in the last section.
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2. MOTIVATION FOR PATCH ADAPTIVITY AND
ACTIVE MATCHING IN NLM

2.1. Bias-variance Perspective on NLM

In this paper, we focus on removing additive noise from im-
age, with the data model as

y(i) = x(i) + n(i), (1)

where x(i) and y(i) are the ith pixel value of the original and
corrupted image respectively, and n(i) is the AWGN noise
with variance of σ2 at the same location. Most of modern
denoising filters [1] take the following form:

x̂(i) =

∑
j wijy(j)∑

j wij
, (2)

where wij denotes filtering weight, which depends on the
proximity or similarity between pixels i and j. Specifically,
in NLM the weight is set as

wij = K (D (Pi, Pj)) , (3)

where K(·) is the kernel function and D (Pi, Pj) measures
the similarity (or dissimilarity) between two patches of fixed
size and shape surrounding pixels i and j. The mean squared
error resulting from (1) and (2) can be derived as

e(i) = E
[
{x(i)− x̂(i)}2

]

=

⎡
⎣x(i)−∑

j

cijx(j)

⎤
⎦
2

+ σ2
∑
j

c2ij (4)

where cij is the normalized weight corresponding to w ij , and
the first and second term of the last line correspond to bias
and variance respectively. From this expression, it is clear that
to guarantee good denoising performance we should include
as many similar pixels as possible into averaging operation,
while at the same time exclude as many dissimilar pixels as
possible from the same process. Inclusion of dissimilar pixels
will lead to large bias, while too few similar pixels will cause
high variance. The next subsection will illustrate this point by
a simple example.

By the way, there also exists patch-wise NLM denoising
paradigm [9], corresponding to (2) replaced by

x̂(i) =

∑
j wijy(j)∑

j wij
, (5)

where the boldfaced letters stand for patches surrounding the
center pixels. Due to the redundancy of patch space with
respect to pixel space, reprojection of the denoised patch is
needed to yield the final denoised pixel value. The important
observations made in the last paragraph hold for the patch-
wise filters too. We will revisit this issue later.

(a) (b)

Fig. 1. Need for patch adaptivity and active matching
(a) Rare patch effect (b) Benefits from active matching

2.2. Rare Patch Effect—The Need for Patch Adaptivity

A fundamental assumption underlying NLM is patch regu-
larity [7], that is, similar patches have similar central pixels.
However, given the locally varying geometry in natural im-
ages, the fixed patch size and shape adopted in baseline NLM
is clearly problematic. Fig. 1(a) shows the situation when
NLM is applied to denoising an ideal edge image (what is
shown is actually oracle image, while in practice only noisy
image is known). The red points denote current pixels to be
denoised and the blue points stand for pixels which are patch-
wise similar to the red pixels. One red pixel is near edge, and
its patch-wise similar pixels are confined to those which are
aligned along the edge with that red pixel. The other red pixel
has its patch completely contained within one of uniform re-
gions, so any pixel with its patch totally lying within the same
uniform region is patch-wise similar to this kind of red pixel.
Therefore, with baseline NLM the pixels near the edge will
find far less patch-wise similar pixels than the pixels inside
the uniform region, while from the perspective of pixel-wise
similarity two scenarios are just similar. This is referred to as
rare patch effect, which yields relatively high denoising vari-
ance near the edge, appearing as noise halo.

At first glance, the rare patch effect may be alleviated by
using smaller patches. However, with noisy image it is pre-
ferred to use larger patches to give more reliable similarity es-
timates. Therefore, better tradeoff can be struck by patch size
and shape adaptivity with respect to varying local geometry.
Furthermore, since patch information is exploited to estimate
the similarity between two pixels, the patch adaptivity should
be built on the relationship between local neighborhoods cor-
responding to the two center pixels. While the observations
are quite simple, the associated criterion is not fulfilled by ex-
istent patch adaptivity approaches, where for a given pixel to
be denoised the patch size and shape is fixed when estimating
the similarity between this pixel and its different neighbors.

2.3. Active Matching for Patch Adaptivity

To achieve the desired patch adaptivity, we take a novel ac-
tive matching approach, whose principles are described as
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Fig. 2. Process of active matching

follows. Assume a sequence of enlarging patches P (k), k =
1, 2, . . . ,m. Given pixels i and j, we start from the smallest
patch and gradually increase patch size until some matched-
ness criterion is not satisfied by corresponding patches around
the two pixels currently under consideration. The process is
formalized as

k∗ = max
{
k
∣∣∣∀l ≤ k,C(P

(l)
i , P

(l)
j ) == true

}
, (6)

where C denotes the proposition for matchedness of two
patches. The result of active matching is P (k∗). To address
patch shape adaptivity, we perform active matching indepen-
dently in multiple directions, say four quadrants, and fuse the
corresponding matching results, which is shown in Fig. 2,
where the left half illustrates the idea of fusion of multiple di-
rectional results and the right half corresponds to the process
of maximal expansion in a single direction.

The effect of active matching is well demonstrated in Fig.
1 (b), in contrast with Fig. 1 (a). Consider the same edge
pixel. With edge-aligned pixels, active matching will yield a
large matched patch, while with pixels far inside the uniform
region the process will lead to relatively small matched patch,
which is more reasonable now. The evident benefit of active
matching is more accurate similarity estimates, and in turn
better bias-variance tradeoff.

It is interesting to highlight the advantages of active
matching approach compared with previous works. Besides
richer patch adaptivity, we invest more efforts into analysis
of difference between local neighborhoods, which is believed
to bring out patch adaptivity of finer granularity. The ef-
fect becomes more profound for patch-wise NLM filtering
paradigm.

3. PRACTICAL NLM DENOISING ALGORITHM
BASED ON ACTIVE MATCHING

It remains to determine the matchedness criterion in active
matching. Even more challenging is to take noise into ac-
count during the decision process. The solutions to these
questions have been found in [11], where Foi et al. proposed

P(k), k = 1, 2, ,m

Fig. 3. Active matching for noisy input based on LPA-ICI

a patch-wise shape-adaptive DCT-Wiener denoising scheme
and more interestingly the local patch shapes were determined
using LPA-ICI criterion. We generalize the same idea to ac-
tive matching between two local neighborhoods.

Given pixels i and j, we first compute the difference im-
age between their corresponding noisy neighborhoods. If the
two neighborhoods do not overlap, the results from this oper-
ation can be considered as true difference image corrupted by
AWGN with variance of σ2

d = 2σ2. We then apply LPA-ICI
to this noisy difference image to obtain maximally matched
patch between two pixels. Specifically, let z denote the d-
ifference image, we select 0th-order polynomial as underly-
ing local image model. In other words, for each of enlarging
patch P (k) we compute

ẑ
(k)
0 =

∑
j∈P (k) zj∣∣P (k)

∣∣ (7)

where
∣∣P (k)

∣∣ is the number of pixels in P (k). The maximally
matched patch is then selected based on the following criteri-
on:

k∗ = max

{
k

∣∣∣∣∣
k⋂

l=1

[
ẑ
(l)
0 − Γσ2

d, ẑ
(l)
0 + Γσ2

d

]
�= ∅

}
, (8)

where Γ is the constant reflecting local image smoothness and
possible deviation of assumption from reality. The whole pro-
cess is graphically described in Fig. 3.

It seems to be in order to briefly explain how this match-
ing scheme works. It can be seen from the LPA-ICI criterion
that the output of active matching operation can be thought
of as maximally affinely matched patch between two neigh-
borhoods, that is, the true difference image within this patch
can be well approximated by constant functions. Whether t-
wo pixels are actually similar is determined finally by kernel
functions.

To take full use of the benefit of reliable similarity es-
timates provided by active matching, we incorporate it into
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Table 1. Denoising results (PSNR, in dB) of the proposed algorithm across various noise levels compared with several recent
patch-adaptive NLM schemes. One box enclosed by double-line border corresponds to one combination of test image and noise
level. Each box contains four figures, where the upper-left, upper-right, lower-left and lower-right part correspond to WAV,
WAV-2, NLM-SAP and our method respectively. The highest performance in each scenario is boldfaced.

Barbara Boats Bridge Cameraman Couple Hill House Lena Man Peppers

36.39 36.75 35.50 36.27 34.36 34.84 37.21 37.73 36.04 36.64 34.77 35.57 38.11 38.53 37.35 37.88 36.35 36.95 36.59 37.28
σ = 5 36.94 36.89 36.35 36.38 34.78 34.92 37.78 37.86 36.73 36.79 35.45 35.64 38.56 38.60 37.96 38.02 37.06 37.11 37.46 37.52

32.73 33.03 32.57 32.91 29.28 30.15 32.71 33.55 32.63 33.03 30.73 31.54 35.19 35.36 34.67 34.97 32.67 33.19 33.47 33.90
σ = 10 33.59 33.25 33.01 32.98 30.09 30.23 33.41 33.56 33.12 33.12 31.47 31.61 35.37 35.36 35.10 34.99 33.23 33.77 34.22 34.10

30.16 30.02 29.56 29.69 25.86 26.44 29.12 29.72 29.32 29.44 27.75 28.06 32.25 32.29 32.07 32.06 29.53 29.79 30.37 30.66
σ = 20 30.23 30.11 29.71 29.87 26.23 26.54 29.57 29.81 29.43 29.69 27.88 28.24 32.38 32.42 32.03 32.15 29.75 29.99 30.72 30.77

25.03 24.99 25.06 25.19 22.16 22.38 24.73 24.93 24.52 24.66 23.88 24.05 26.75 26.82 27.23 27.28 25.42 25.58 24.94 25.21
σ = 50 24.67 25.08 25.13 25.60 22.24 22.71 24.79 25.15 24.54 25.16 23.84 24.41 26.46 27.29 27.15 27.57 25.55 25.98 25.37 25.68

patch-wise NLM filtering structure. As noted before, patch-
wise filtering tends to include more pixels into averaging op-
eration, leading to lower residual noise variance. Howev-
er, high-bias may arise due to dissimilar pixels participat-
ing in the filtering process. In fact, even though the two
neighborhoods are patch-wise similar, individual pixels are
not necessarily similar. The finer-granularity adaptivity of ac-
tive matching is just a remedy to this potential problem.

For reprojection of denoised patch, we adopt the WAV
(weighted average reprojection) method [9], where the repro-
jection weight of each pixel is set to be inversely proportional
to its residual noise variances. It is worthwhile to note the
novelty added by active matching to reprojection process. In
previous works, for current pixel to be denoised, all patches
involved in patch-wise weighted averaging are of the same
size and shape, or when they are stacked there are vertically
same number of pixels at any horizontal location. Therefore,
each pixel of current denoised patch has same residual noise
variance and same reprojection weights. In contrast, by ac-
tive matching the patches participating in averaging are not
necessarily of same size and shape. So when these patches
are vertically aligned, at different horizontal locations there
may be different number of pixels taking part in averaging,
as such the residual noise variances and in turn reprojection
weights at those locations may be different. This is believed
to be a meaningful extension to traditional patch-wise denois-
ing paradigm.

4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the active matching-based
patch adaptivity approach for NLM denoising, simulation ex-
periments are performed on typical test images across wide
range of noise intensities. The results of three recent patch
adaptive NLM denoising algorithms, WAV [9], WAV-2 [9]
and NLM-SAP [8] are shown for comparison.

The parameter settings of the proposed method are as fol-
lows. The minimum patch size at single quadrant is set to be
2×2, while the maximum size is set as 6×6 when noise stan-
dard deviation is less than 15 and as 8×8 otherwise. LPA-ICI
parameter Γ is set to be 1.0. Due to patch adaptivity, patch

similarity (dissimilarity) is measured by mean squared dif-
ference. Flat kernel function [9] is used to compute filtering
weights, where bandwidth constant is fixed as 3σ2. In ad-
dition, we use invariably 9×9 filtering windows. The algo-
rithms for comparison are implemented strictly as specified
in the original papers or with codes shared by the authors.

Due to limit of space, only objective denoising perfor-
mance indices are given, as shown by Table 1. All data are
obtained by averaging results from 5 independent noise real-
izations. The superiority of the active matching approach is
clearly seen from the table, especially for images with rich
edge structures and for scenarios with severe noise.

5. CONCLUSIONS

In this paper, a novel active approach is proposed to address
patch adaptivity in NLM image denoising. Before comput-
ing the similarity between two pixels, active matching is per-
formed to obtain optimally matched patch size and shape be-
tween these pixels. The idea is successfully implemented on
noisy input by building on LPA-ICI criterion from adaptive
kernel regression. The modifications made lead to meaning-
ful improvement and extension to baseline NLM and previous
adaptive approaches, which have been confirmed by extensive
simulation experiments.

Further performance boost can be achieved by making the
process of active matching more adaptive. For example, the
key parameter Γ of LPA-ICI has been set as global constan-
t for simplicity in experiment, which is suboptimal. Further
improvements can be made possible by letting Γ vary accord-
ing to local image characteristics.

Potential application of active matching beyond NLM can
also be envisioned. An immediate application is to incorpo-
rate active matching into BM3D framework to arrive at truly
3D shape-adaptive denoising structure. Applications outside
denoising are also possible. For example, in image super-
resolutions based on neighbor embedding (NE) [12], low-
resolution patch retrieval is performed before synthesizing
high-resolution results. Active matching is believed to be of
interest for this task.
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