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ABSTRACT

In this paper, we propose a new image denoising scheme that is an
integration of a content-adaptive guided filter and a collaborative
Wiener filter. The proposed scheme consists of two steps. First
a content-adaptive guided filter, which smoothes image based on
spatial similarity within a local window, is applied. The content-
adaptive guided filter can efficiently preserve edges while smooth-
ing noise. A preliminary estimation of noise-free image can be
obtained by the content-adaptive guided filter. In the second step,
a patch-grouping based collaborative Wiener filter is adopted to ex-
ploit non-local similarity, and outputs final denoised image. Com-
pared to the state-of-the-art denoising scheme, BM3D, the pro-
posed method is more efficient in computation. Moreover, sim-
ulation results have shown that the proposed method can achieve
comparable PSNR values and better visual quality on denoising of
textural images.

1. INTRODUCTION

Denoising is a widely studied topic in the filed of image processing
and computational photography. Numerous denoising schemes
have been proposed. Local filters are used in many denoising
schemes [1] [2] [3]. The pixel similarity with a small local window
is analyzed by the local filters. Small pixel variations that may be
caused by noise are smoothed while large intensity changes are
preserved. The local filters are very efficient in computation, but
the performance is restricted by the limited information in local
areas. Details are often smoothed by the local filters as well as
noise. To overcome this limitation, a content adaptive guided filter
was introduced [4]. An edge-aware weight is included to preserve
sharp edges. A joint bilateral filter scheme was proposed in [5],
which uses the temporal correlation between images to distinguish
noise and details. Then the details can be kept after denoising.
Besides the local pixel correlation, the global pixel correlation is
also utilized for denoising [6] [7]. Steering kernel transform is
applied to achieve a sparse representation. By preserving high-
magnitude transform coefficients that represent the true signals and
discarding the small-magnitude coefficients, most noise signals
can be removed. But sometimes a fixed 2-D transform cannot
efficiently attain a sparse representation of certain image structure
[11].

Compared to pixel correlation, structure correlation is more
robust to noise. Patch-based non-local schemes were proposed
to investigate the structure correlations in a noise image [8] [9].
The patch-based non-local schemes are based on the assumption
that structure/content would be repeated in an image. Linear com-
bining similar structure/content can obtain an approximation of
true signal. In the BM3D [8], similar patches are grouped to-
gether. Then a 3-D transform is applied on grouped patches to
achieve a sparse representation through local correlation within

single patch and non-local correlation among similar patches. The
similar structure of grouped patches brings the edge information
to low frequency in transform domain. A filter is applied in trans-
form domain to shrink high frequency coefficients. Thus the de-
tails are preserved while noise removal. On the other hand, the
performances of the patch-based non-local schemes are heavily
dependent on the patch similarity [11] [12]. If there are not enough
similar patches or patches are wrongly matched, the signals would
not be sparsely represented in transform domain. Details will be
smoothed. To prevent the disturb of noise and find truly matched
patches, transform coefficients [8] and the structural similarity in-
dex [12] are adopted to measure the similarity between patches.
Another concern of the BM3D is its high computational cost.

In this paper, we proposed a new denosing scheme to over-
come this limitation of patch-based non-local denoising schemes.
The proposed method is based on an observation that the patch
grouping in a textural noise image may be not accurate. Due to the
complex structure and noise, the patches that are not similar may
be grouped together. Thus the proposed scheme avoids the patch
grouping in a noise image. In the first step, a content-adaptive
guided filter proposed in [4] is applied on the input noise image.
The content-adaptive guided filter includes an edge-aware weight
that can efficiently preserve the edges. A preliminary estimation
of the true signal can be obtained by the content-adaptive guided
filter. Then in the second step, a patch-grouping based 3-D collab-
orative Wiener filter is adopted to exploit the non-local similarity.
To find truly matched patches, the patch grouping is conducted
based on the preliminary estimation that is outputted by the first
step. As there is less noise in the preliminary estimation, the
similar patches can be well grouped. A 3-D transform is applied
on grouped patches. Then a Wiener filter, of which coefficients
are derived from the preliminary estimation, is used to shrink the
transform coefficients. Through inverse transform of the shrunk
coefficients, a denoised image can be generated. Similar as the
BM3D, the proposed algorithm also adopts a hybrid structure to
achieve a sparse representation. Both the local pixel similarity
and the non-local structure similarity are utilized in the proposed
algorithm. As the content-adaptive guided filter has good edge-
preserving performance, the proposed denoising scheme is espe-
cially suitable for denoising textural images. Furthermore, the pro-
posed method is more efficient in computation than the BM3D, as
the time-consuming 3-D collaborative hard-threshold filter in the
BM3D is replaced by the content-adaptive guided filter. Compared
to the 3-D collaborative hard-threshold filter, the time cost of the
content-adaptive filter is negligible. The total processing time of
denoising on black-and-white images can be saved about 49% by
using the proposed algorithm.

The rest of this paper is organized as follows. The denoising
scheme, BM3D, is reviewed in Section 2. The proposed algorithm
is presented in Section 3. Some simulation results are displayed in
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Section 4 to prove the performance of proposed algorithm. Finally,
the conclusion remarks are given in Section 5.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 1: Visual comparison of denoising results. (a) original image;
(b) noise image (σ2 = 0.03); (c) result of the BM3D; (d) result
of the proposed scheme; (e, f, g) enlarged parts of (a, c, d)
respectively.

2. IMAGE DENOISING BY 3-D TRANSFORM-DOMAIN
COLLABORATIVE FILTER

The proposed algorithm can be considered as a modification of
the BM3D. Thus a brief review of the BM3D is presented in this
section.

The BM3D has two steps: a patch-grouping based 3-D col-
laborative hard-threshold filter, and a patch-grouping based 3-D
collaborative Wiener filter. In the BM3D, a noise image Z is
divided into fixed-size blocks. Let the currently processing block
being denoted as ZB . Through block matching within a noise
image, a set of blocks that are similar to theZB can be found. Then
a 3-D collaborative hard-threshold filter is applied on the grouped
blocks. An array of denoised blocks ZhtB can be yielded as:

ZhtB = Γ−1(γ(Γ(ZB))), (1)

where ZB denotes a 3-D array of grouped blocks, and Γ represents
a 3-D transform. γ is a hard-threshold operator. A basic estimate
of the denoised image Zht can be obtained.

Then in the second step of the BM3D, the block matching is
conducted based on the denoised image Zht. For a block ZhtB ,
a group of blocks Z̄htB can found through block matching. Then
a 3-D collaborative Wiener filter is applied on the corresponding
blocks of input noise image. The denoised blocks ZwieB can be
estimated as:

ZwieB = Γ−1(W(Γ(Z̄B))), (2)

where Z̄B is a block group that contains the corresponding blocks
with Z̄htB , and W is Wiener shrinkage coefficients. It is computed
from the 3-D transform coefficients of ZhtB as:

W =
|Γ(Z̄htB )|2

|Γ(Z̄htB )|2 + σ2
, (3)

where σ is the noise variance.
In the BM3D, grouping similar blocks is conducted in both of

the first step and the second step. By applying a 3-D collaborative

filter on the grouped blocks, the local correlation within a block
and the non-local correlation among similar blocks are used to
achieve a sparse representation. The first step generates a basic
estimate of a true image. Then this basic estimate is used as a
reference image in the second step to improve the reliability of
block matching and compute the Wiener coefficients. Thus the
quality of the basic estimate is critical for the performance. Im-
proving the quality of the basic estimate can further improve the
quality of final output image. A challenging for the first step of
the BM3D is the block matching [11]. With the interference of
noise, the block matching in textural image will be not reliable.
In this case, the quality of the basic estimate would be dropped.
Thus we propose a content-adaptive guided filter which mainly
relies on the local information to generate the basic estimate. The
unreliable block-matching in a textural noise image is avoided in
the proposed method.

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Fig. 2: Visual comparison of denoising results. (a, h) original
images; (b, i) noise images; (c, j) results of the BM3D; (d, k)
results of the proposed scheme; (e, f, g) enlarged parts of (a, c,
d) respectively; (l, m, n) enlarged parts of (h, j, k) respectively.

3. DENOISING BY CONTENT-ADAPTIVE GUIDED
FILTER AND 3-D COLLABORATIVE WIENER FILTER

The proposed denoising algorithm uses a hybrid approach to ex-
ploit the local and non-local correlations for denoising. There are
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two parts in the proposed method: a content-adaptive guided filter
[4] and a 3-D collaborative Wiener filter [8].

3.1. Content-adaptive guided filter

The content-adaptive guided filter used in the first step is based
on the observation that the human visual system (HVS) is more
sensitive to pixels at edges than those pixels in smooth regions.
Thus the edges should be preserved during noise smoothing [4].

A denoised image Ẑ can be expressed as a linear transform of
the noise image Z in a local window Ω [1] [4]:

Ẑ(p) = ap′Z(p) + bp′ ,∀p ∈ Ω(p′), (4)

where ap′ and bp′ are two constants in Ω.
To determine the linear coefficients (ap′ , bp′), a cost function

on noise image Z and denoised image Ẑ is defined as∑
p∈Ω(p′)

[(ap′Z(p) + bp′ − Z(p))2 +
λ

ΦZ(p′)
a2
p′ ]. (5)

Here, the edge-aware weight ΦZ is computed by the local
variances σ2

Z of 3× 3 windows of all pixels as follows:

ΦZ(p′) =
1

N

N∑
p=1

(
σ2
Z(p′)+ν1
µ2
Z

(p′)+ν2
)ζ

(
σ2
Z

(p)+ν1

µ2
Z

(p)+ν2
)ζ
, (6)

where N is the total pixel number, and µ is mean pixel value. ν1,
ν2 and ζ are three constants. The value of ν1 is (0.001∗L)2 withL
being the dynamic range of input image. The value of ν2 is 10−9.
The value of ζ is selected as 0.75 in this paper.

A denoised image Ẑ can be obtained by the content-adaptive
guided filter as:

Ẑ(p) = āpZ(p) + b̄p, (7)

where āp and b̄p are average values of ap′ and bp′ among all
overlapped windows that a pixel p is involved.

Compared to the hard-threshold collaborative filter used in the
first step of BM3D, the content-adaptive filter can achieve better
edge preserving performance than the hard-threshold collaborative
filter for textural images. In the hard-threshold collaborative filter,
edge preserving is achieved through non-local block correlation.
Blocks with similar structure are grouped together. The repeated
edge information can be easily distinguished from random noise in
transform domain and then be preserved. But in a textual image,
it is challenging to group truly matched blocks due to the interfer-
ence of noise. In this case, the sparse representation between edge
and noise will not be available in transform domain. The hard-
threshold collaborative filter will smooth details as well as noise.
The content-adaptive guided filter uses the local information to
remove noise. Due to the edge-aware weight, the details can be
efficiently preserved. As a trade-off, the noise near edges will be
preserved as well. But the noise would be masked by the nearby
edges and is not easily to be perceived.

Moreover, the content-adaptive guided filter is more efficient
in computation. The block matching in the hard-threshold collab-
orative filter is time-consuming, especially when the search range
is large. The 3D transform and inverse transform are complex
and require large memory to process. On the other hand, the
complexity of the content-adaptive guided filter is O(N) for an

Table 1: PSNR values of the denoised textural images

Image σ2 BM3D
Proposed
Method

Globe

0.02 25.93 26.07
0.03 25.00 25.28
0.04 24.40 24.55
0.05 23.82 23.83

Vase

0.02 24.03 24.26
0.03 22.44 22.74
0.04 21.29 21.63
0.05 20.43 20.78

Window

0.02 24.49 24.48
0.03 22.87 22.97
0.04 21.67 21.86
0.05 20.75 21.02

image with N pixels. Because of the box filter in [1], the window
size does not effect the computational cost of the content-adaptive
guided filter.

3.2. Collaborative Wiener Filter

In the second step of the proposed algorithm, a 3-D collaborative
Wiener filter, which is presented in the BM3D [8], is applied to
exploit the non-local image correlation.

The collaborative Wiener filter exploits non-local image cor-
relation through block matching. The block matching is conducted
on the output image of content-adaptive guided filter, Ẑ, to group
the similar blocks. For a block in the image Ẑ, which is denoted
as ẐB , a group of similar blocks ẐB can be formed through block
matching. As the noise in the image Ẑ is attenuated, it is more
possible for block matching to find truly matched blocks. Then
a block group ZB in input image Z, which contains the same
position blocks as ẐB , can be formed correspondingly. Similar to
the BM3D, a 3-D transform is applied on ZB to achieve a sparse
representation in transform domain. A Wiener filter is used to
shrink the 3-D transform coefficients.

If blocks ẐB are flat, most of their transform coefficients will
be small magnitude. The corresponding Wiener coefficients W
will be close to 0. Then the coefficients of ZB will be shrunk to 0
by the Wiener filter. The denoised blocks ẐwieB will be smooth. On
the other hand, if the details in ẐB are preserved, the correspond-
ing Wiener coefficient will approximate to 1. Then the details in
input image will be preserved after noise removal. As the content-
adaptive guided filter used in the proposed algorithm has better
edge preserving performance than the collaborative hard-threshold
filter of the BM3D, the image Ẑ has more detail information than
Zht. Then the Wiener coefficients derived from Ẑ will preserve
more high frequency coefficients. The final denoised image Ẑwie

produced by the proposed scheme will contain more details.

4. SIMULATION RESULTS

In this section, a few images are tested to compare the proposed
algorithm with the state-of-the-art denoising scheme, BM3D [8].
Both of the methods are implemented in C programming. The
BM3D code is got from [13], which is provided by its authors. The
simulation is carried on Dell Precision T7400 with Intel Quad Core
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CPU 3.2 GHz and 4GB of RAM. The noise images are generated
through artificially adding noise on clean images. Then the noise
variance σ is available. In simulation, the parameters of the BM3D
are set as the default values in [8]. The window size of content-
adaptive guided filter is 3 × 3. The denoised results on textural
images with σ2 = 0.03 are presented in Figs. 1 and 2 for visual
comparison. As shown in Fig. 1, the proposed method can produce
a sharper image than the BM3D. In Fig. 1(f) that is the result of
BM3D, the lines and edges are blurred while the details in Fig.
1(g) are visible. The PSNR values of the denoised images are
presented in Table 1. It can be seen that the proposed algorithm can
achieve slightly higher PSNR values than the BM3D for textural
images.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 3: Denoising results of “Man”. (a) original image; (b) noise
image; (c) result of the BM3D (PSNR = 24.70dB); (d) result of the
proposed scheme (PSNR = 24.65dB); (e, f, g) enlarged parts of (a,
c, d) respectively.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4: Denoising results of “Elaine”. (a) original image; (b) noise
image; (c) result of the BM3D (PSNR = 29.15dB); (d) result of the
proposed scheme (PSNR = 28.89dB); (e, f, g) enlarged parts of (a,
c, d) respectively.

Besides the textural images in Figs. 1 and 2, three classical
images that were tested by many denoising schemes are used to
evaluate the performance of proposed scheme, as shown in Figs.
3, 4 and 5. The overall visual qualities of the images that are
generated by the BM3D and the proposed scheme are very close.
When parts of the images are zoomed in, it can be seen that the

(a) (b) (c) (d)

(e) (f) (g)

Fig. 5: Denoising results of “Girl”. (a) original image; (b) noise
image; (c) result of the BM3D (PSNR = 26.92dB); (d) result of the
proposed scheme (PSNR = 26.90dB); (e, f, g) enlarged parts of (a,
c, d) respectively.

results of the proposed algorithm can present more small details.
On the other hand, the BM3D can achieve better performance on
denoising of flat areas. For example, the girl’s face and hair are
clearer in Fig. 5(d), which is the result of the proposed algorithm.
But the background in Fig. 5(d) is not as smooth as the result of
the BM3D, Fig. 5(f).

It is worth noting that the proposed scheme can achieve com-
parable denoising performance to the BM3D but takes much less
processing time. BM3D takes 15.21s to process the black-and-
white image in Fig. 4, whose resolution is 512×512. The first step
of the BM3D costs 7.64s, and the second step costs 7.57s. For the
same image, the content-adaptive guided filter only takes 0.12s to
denoise. Compare to the first step of the BM3D, the computational
time of content-adaptive filter is negligible. The total cost time
of the proposed scheme is 7.76s. Thus the proposed scheme can
save up to 49% processing time for the denoising of black-and-
white images. As the processing time of both methods are linear
with resolution, the bigger the image, the more time saved by the
proposed scheme.

5. CONCLUSIONS

A new denoising scheme which includes a content-adaptive guided
filter and a 3-D collaborative Wiener filter is proposed. The content-
adaptive guided filter is first applied on a noise image to attenuate
noise through exploiting pixel correlations in a local window. A
preliminarily denoised image can be generated by the content-
adaptive filter. Then a 3-D collaborative Wiener filter is applied on
the preliminarily denoised image to exploit the non-local structural
similarity. Thus both the local and non-local information is used
by the proposed scheme to remove noise. As the preliminarily
denoised image has less noise and plenty details, the 3-D collabo-
rative Wiener filter can find truly matched blocks through block
matching and then achieve a sparse representation in transform
domain. The coefficients of the Wiener filter, which are derived
from the preliminarily denoised image, can better preserve fine
details. Simulation results show that the proposed scheme can
achieve comparable performance with the BM3D but with less
complexity.
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