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ABSTRACT 

 
In this paper, a very efficient image denoising scheme, 
which is called nonlocal means based on bidirectional 
principal component analysis, is proposed. Unlike 
conventional principal component analysis (PCA) based 
methods, which stretch a 2D matrix into a 1D vector and 
ignores the relations between different rows or columns, we 
adopt the technique of bidirectional PCA (BDPCA), which 
preserves the spatial structure and extract features by 
reducing the dimensionality in both column and row 
directions. Moreover, we also adopt the coarse-to-fine 
procedure without performing nonlocal means iteratively. 
Simulations demonstrated that, with the proposed scheme, 
the denoised image can well preserve the edges and texture 
of the original image and the peak signal-to-noise-ratio is 
higher than that of other methods in almost all the cases.       
 

Index Terms— Image denoising; nonlocal means; 
principal component analysis (PCA); bidirectional  principal 
component analysis (BDPCA); 2-D signal processing 
 

1. INTRODUCTION 
 
Nonlocal means (NLM) image denoising has attracted much 
attention since the work of Buades et al. [1]. Many powerful 
image denoising methods based on the nonlocal principle, 
which exploits the nonlocal self-similarities among the 
patches in an image, were proposed in recent years [1-10]. 

The ability of NLM for denoising is due to the patch 
regularity assumption, e.g., similar patches have similar 
center pixels. However, this assumption does not always 
hold in inhomogeneous regions. In addition, NLM often 
fails to obtain proper weights, especially in complex scenes. 
Therefore, many powerful methods were developed for 
calculating better weights [2-10]. In [2], Zhong et al. 
proposed to use both structure and homogeneous patch 
similarity to determine the weights in NLM (NLM-SHPS). 
In [3, 4], Deledalle et al. adopted shape-adaptive patches 
and the probability patch-based filter (PPB) in the NLM 
algorithm. In [5] and [6], the NLM methods based on the 
Foveated patch distance (Fov-NLM) and calculating the 
minimized variance using average reprojections with two 
sizes of patches (2-WAV) were proposed, respectively. In [7-
10], several methods applying the geometrical structures of 

an image were proposed. In [7], Zhang et al. proposed a 
PCA method with local pixel grouping (LPG-PCA). The 
training patches with similar local spatial structures are 
grouped before PCA transformation. The principal 
neighborhood dictionary was adopted in [8]. In [9], Luisier 
et al. applied the wavelet transform together with Stein’s 
unbiased risk estimation (SURE-LET). A wavelet shrinkage 
method using Stein’s unbiased risk estimation (Shrink-
SURE) was proposed by Zhou and Cheng in [10].  

In this paper, we propose an efficient denoising scheme, 
which is called nonlocal means based on bidirectional 
principal component analysis (NLM-BDPCA).  

Unlike conventional PCA-based methods, which directly 
stretch 2D image patches into 1D image vectors and hence 
ignores the spatial relations between different rows (or 
columns), BDPCA projects 2D image patches using row and 
column projectors to generate feature matrices. Therefore, it 
can capture the better intrinsic geometrical structure 
embedded in the original image spatial domain [11, 12]. We 
incorporate BDPCA into the framework of nonlocal means 
for better weight calculation and perform coarse-to-fine 
steps to improve the denoising performance. From all 
simulation results, the proposed scheme achieves highly 
superior performance when compared with classical 
nonlocal means methods and several recent powerful image 
denoising methods from subjective and objective measures 
of image quality in a wide range of noise addition. 

The remainder of this paper is organized as follows. In 
Section 2, we describe the proposed image denoising 
algorithm with coarse-to-fine steps, which incorporates 
BDPCA into nonlocal means. Section 3 shows several 
simulations. A conclusion is made in Section 4.     
 

2. PROPOSED NONLOCAL MEANS BASED ON 
BIDIRECTIONAL PRINCIPAL COMPONENT 

ANALYSIS (NLM-BDPCA) 

2.1. Nonlocal Means 

A noisy image can always be modeled as:  

i i iy x n   (1) 

where ni is the zero-mean white Gaussian noise of variance 
2, yi and xi are the ith pixel intensities in noisy and noise-
free images, respectively. Then, in the NLM algorithm, the 
noise-free image is estimated from  
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where Ni is the square search window centered around pixel 
i, wi,j denotes the weight, which is computed by using the 
vectorized noisy patches yi and yj, and ,ii j N i jZ w  is a 

normalization factor. The weight is defined as 
2
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where k is the smoothing parameter, and || ||22 denotes the 
Euclidean distance to measure patch similarities. NLM is 
powerful in denoising, but it causes a bias of the weights 
due to the noisy patches used for similarity measure, 
especially when few repetitive structures exist in an image. 
To overcome this problem, a new method for weight 
calculation is proposed to compute patch distance in the 
low-dimensional feature domain using BDPCA. More 
details are described in the following subsection.  
 
2.2. Bidirectional Principal Component Analysis 

 
As a generalization of two-dimensional PCA (2D PCA), 
BDPCA is a straightforward projection technique, which is 
based on 2D image data matrices rather than 1D vectors [11, 
12]. That is, an image covariance is constructed directly 
using the original 2D image matrices and adopts the concept 
of row and column eigenvectors to create the feature matrix, 
which effectively captures the intrinsic image structure.  

In this paper, we perform BDPCA on image patches in an 
image and incorporate it to nonlocal means for better weight 
calculation. Let {Y1, Y2,…, YN}, xm n

iY R  be a set of 

training image patches in a noisy image (the image patches 
that has been processed are selected as training patches). 
Assume that the noisy image is divided into N blocks. 
Denote the row total scatter matrix and the column total 
scatter matrix respectively by  
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where Y  is the mean matrix of all training image patches. 
Denote the eigenvalues for row

tS  by { }row
i (i = 1, 2, …, n), 

which are sorted in descending order, and the corresponding 
eigenvectors by { }row

iW . Similarly, the eivgenvalues and 

eigenvectors for col
tS are represented by { }col

i  and { }col
iW  (i 

= 1, 2, …, m), respectively. Then, the row and column 
projectors are constructed by choosing the row eigenvectors 
corresponding to the first q largest eigenvalues of row

tS  and 

the column eigenvectors corresponding to the first r largest 
eigenvalues of col

tS , respectively: 

   1 2, ,...,row row row
row qW W W W    ,   1 2, ,...,col col col

col rW W W W    .     

 

The new feature matrix Y with dimensionality reduction 
can be obtained from    

' ( )T
col rowY W Y W   . (5) 

Note that the image blocks centered at each pixel in an 
image are collected for training to construct the row and 
column projectors. In this study, square image patches are 
exploited, i.e., m = n. Obviously, the denoising performance 
depends largely on the number of row and column 
eigenvectors retained. The eigenvectors with small 
eigenvalues generally correspond to noise components. 
Hence, to preserve the most important geometrical structure, 
we first determine the number of row eigenvectors, which is 
retained by a threshold value, TH, as follows 

1argmax row row
i i

i
q TH       (6) 

where 1/row row n row
i i i i     is a normalized eigenvalue. 

The smaller the value TH is, the more details of an image 
are preserved but with a larger amount of noise. In contrast, 
the larger the value TH is, the more noise is removed but the 
image geometrical structure (e.g., edge and texture) may be 
destroyed. TH is set as 0.0014 in all simulations. 

Generally, the number of column eigenvectors is equal to 
or larger than that of row eigenvectors but should be 
selected as small as possible to keep the denoising ability. 
Hence, we set r = q if j* < q and set r = q + 2 if j* > q + 2 

where * arg max col rol
j q

j
j    .  

After the row and column projection of image patches, 
new features for each pixel in an image are generated and 
stretched to d-dimensional vectors (d = qr). Hence, a new 
weight can be obtained by (7) and applied to the NLM 
framework as follows: 

2

, 2 2

1expi j i jw
k 

      
f f  (7) 

where fi and fj denote the d-dimensional new features at 
pixels i and j, and k  is the smoothing parameter. Finally, 

the estimated pixel value ˆix  is calculated from 

           ,
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      where ,ii j N i jZ w   . (8) 

 
2.3. Coarse-to-fine NLM-BDPCA Image Denoising 

 
The proposed coarse-to-fine NLM-BDPCA image 

denoising contains two steps, i.e., the coarse step and the 
fine step. In the coarse step, we exploit the parameters, 
including the search window of size S1xS1, the smoothing 
parameter k1 and the row and column projectors (i.e., 

1 1n q
rowW R  x , 1 1n r

colW R  x ), to perform image denoising by 

(8). In this step, the denoised image x̂   is obtained by 
coarsely smoothing the noisy image to reduce a large 
amount of noise using large parameter values. However, 
there is still visually unpleasant noise residual in the 
denoised image due to the strong noise corrupted total  
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Algorithm 1 Coarse-to-fine NLM-BDPCA image 
denoising 
Input: Noisy image yi. 
-Step 1:  
 Extract all image patches at every pixel i to calculate 

the row and the column total scatter matrices using (4).  
 Generate the row projector and the column projector. 
  Project each image patch centered at i to generate 

features using (5) and (6) and stretch it to a 1D vector fi. 
 For every pixel i, do 

(a) Apply (7) to calculate ,i jw  for every j in the search 

window centered at i. 
(b) Obtain the pixel value estimation result ˆix using 

(8). 
-Noise estimation: Use (9) to estimate the noise variance of 
the denoised image x̂  =  ˆix  obtained by Step 1. 

-Step 2:  
 Apply the same procedure as in Step 1 to each pixel ˆix  

but using smaller parameters, which are discussed in 
more details in Section 2.3, to obtain the final denoised 
pixel îx . 

Output: Denoised image îx .               
 
scatter matrices, which leads to a bias of the row and 
column projectors in BDPCA and hence deteriorates the 
denoising performance. To overcome the above problem, the 
same procedure discussed above is applied to finely smooth 
the denoised image x̂   for the preservation of details and 
reduction of visual artifacts, but smaller parameters are used. 
That is, the search window of size, the smoothing parameter, 
the row and column projectors and image patches grouping 
for BDPCA are all smaller than that in the first step. Hence, 
the final denoised image x̂  is obtained. 

The denoised image x̂  , which is estimated by (9), is also 
applied in the second step. More details in the noise 
estimation can be referred to [7] 

2 2 2[ ]r rc E x        (9) 

where cr < 1 is a constant. x  is the method noise [1], which 
is defined as the difference between the noisy image y and 
the denoised image x̂  , i.e., ˆx y x  . cr is set as 0.95 in all 

simulations. The overall procedure of the proposed scheme 
is summarized in Algorithm 1.    

The proposed algorithm can preserve the edge and the 
structure information because the image patch that has 
higher similarity with the current patch is assigned a larger 
weight, as in (7).  
 

3. SIMULATIONS 
 
The performance of the proposed NLM-BDPCA algorithm 
for image denoising is evaluated on four test images: Lena, 
House, Peppers, and Airplane and the 68 images in the  

      
                        (a)                                                  (b) 

      
                        (c)                                                 (d) 
Figure 1. Comparison of the method noises (i.e., the difference 
between the noisy image and the denoised image) for Lena image 
using different algorithms. (a) Noisy image corrupted with noise 
when  = 40, (b) NLM, (c) LPG-PCA, (d) Proposed NLM-BDPCA. 

 
Berkeley Database [13]. The noisy images are generated by 
adding zero-mean white Gaussian noise with standard 
deviation   {20, 40, 60, 80, 100}. Throughout this paper, 
the search window sizes, S1xS1 and S2xS2,, are set as 21x21 
and 5x5, respectively. The smoothing parameters k1 is 36 
and k2 is 25. The parameters q1 and r1 are determined by (6). 
It should be noted that q1 is at least 6 in our scheme. In the 
fine step, the image patch size is 3x3 and (q2, r2) = (3, 3). To 
illustrate the effectiveness of the proposed denoising 
algorithm, we compare the proposed scheme with the NLM 
method [2] and several other existing methods: NLM-SHPS 
[3], NLM-SAP [4], PPB [5], FovNLM [6], 2-WAV [7], 
LPG-PCA [8], SURE-LET [9], and Shrink SURE [10].  

Fig. 1 shows an example for comparing the method 
noises using different denoising methods for Lena image 
corrupted by the noise with  = 40. The method noise 
indicates whether the geometrical structures or details are 
preserved or eliminated in the denoised image. It looks like 
white Gaussian noise if most of the structures and the edges 
of the original image are preserved after denoising. Note 
that some edges, such as the texture of the hair and the 
border of the face, appear in the method noises in Figs. 1(b) 
and 1(c) but do not appear in Fig. 1(d). It shows that, 
compared with NLM and LPG-PCA, the proposed scheme 
can well preserve the edges of an image.  

Fig. 2 shows the cropped and zoom-in denoising results 
of the proposed scheme and existing state-of-the-art 
denoising methods. It can be seen that the proposed scheme 
have better visual quality than all of the other methods. 
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                   (a)                                  (b)                                      (c)   

   
                    (d)                                  (e)                                      (f)   

   
                    (g)                                  (h)                                      (i)   

   
                    (j)                                  (k)                                      (l)   
Figure 2. Denoising results for Lena image by different schemes. 

(a) Original image, (b) Noisy image corrupted with noise when  = 
60, (c) NLM, (d) NLM-SHPS, (e) NLM-SAP, (f) PPB, (g) 
FovNLM, (h) 2-WAV, (i) LPG-PCA, (j) SURE-LET, (k) 
NeighShrink SURE, (l) Proposed NLM-BDPCA.  

 
Since the NLM-BDPCA denoising algorithm can capture 

local image structure for better weight calculation, the noise 
in images is removed without introducing too much artifact. 

From Tables I and II, one can obviously see that the 
proposed scheme significantly outperforms the classical 
nonlocal means method and several powerful image 
denoising methods, especially when the image is seriously 
corrupted by noise. Although a little more computation time 
is required, the denoising performance is much better.   

 
4. CONCLUSION 

 
This paper presents a very effective image denoising scheme, 
which incorporates bidirectional principal component 
analysis (BDPCA) into the framework of nonlocal means. A 
coarse-to-fine algorithm is designed and its effectiveness is 
shown in simulation results, which demonstrated that the 
proposed scheme is significantly superior to the classical 
nonlocal means method and several recent powerful 
methods in a wide range of noise addition. 

TABLE I 
PEAK SIGNAL-TO-NOISE RATIO (PSNR) COMPARISON 
OF IMAGE DENOISING RESULTS. THE BEST RESULTS 

FOR EACH CASE ARE HIGHLIGHTED. 

Images
Noise 
σ 

NLM
NLM-
SHPS

PPB
Fov-
NLM 

2-
WAV 

LPG-
PCA 

Shrink 
SURE

Proposed
NLM-

BDPCA

Lena

20 31.65 31.93 31.49 32.44 32.10 32.62 31.52 32.48

40 28.34 28.79 28.67 29.09 28.55 29.27 28.41 29.80

60 26.39 26.87 26.81 27.02 26.38 27.33 26.64 28.00

80 25.01 25.50 25.40 25.51 24.94 25.94 25.35 26.70

100 23.98 24.42 24.26 24.31 23.82 24.85 24.43 25.67

House

20 32.46 32.46 31.80 32.71 32.27 33.07 31.07 32.95

40 28.46 29.01 28.90 29.43 28.30 29.71 27.88 29.82

60 25.81 26.65 26.85 26.93 25.78 27.46 26.04 27.87

80 24.12 24.97 24.98 25.09 24.27 25.79 24.76 26.37

100 22.98 23.72 23.59 23.71 23.16 24.49 23.75 25.14

Air-

plane 

20 30.96 31.01 30.54 31.47 31.36 32.15 30.95 31.61

40 27.38 27.94 27.58 28.17 27.43 28.48 27.95 28.67

60 25.02 25.73 25.46 25.78 25.05 26.27 26.11 26.54

80 23.52 24.20 23.91 24.12 23.60 24.73 24.89 25.08

100 22.49 23.08 22.76 22.95 22.58 23.60 24.02 24.00

Peppers

20 31.64 31.71 31.31 32.05 32.10 32.26 30.75 32.11

40 28.49 28.96 28.67 29.11 28.66 29.20 27.26 29.60

60 26.38 26.92 26.58 26.95 26.26 27.13 25.36 27.73

80 24.84 25.41 25.10 25.33 24.73 25.60 24.11 26.30

100 23.70 24.25 23.95 24.07 23.61 24.41 23.16 25.20

 
TABLE II 

PSNR COMPARISON OF IMAGE DENOISING RESULTS 
ON THE 68 IMAGES IN THE BERKELEY DATABASE [13]. 

Noise 
 NLM

NLM-
SHPS

PPB
Fov-
NLM 

2-
WAV 

LPG-
PCA 

Shrink 
SURE

Proposed
NLM-

BDPCA
60 23.29 23.75 23.62 23.76 23.53 23.99 23.61 24.17 

80 22.36 22.73 22.61 22.70 22.41 22.96 22.64 23.24 

100 21.69 21.96 21.81 21.89 21.56 22.22 21.92 22.56 
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