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ABSTRACT 
 
This paper addresses the problem of impulse denoising 
from hyper-spectral images. Impulse noise is sparse; 
removing impulse noise requires minimizing an l1-norm 
data fidelity term. Prior studies have exploited the intra-
band spatial correlation (leading to sparsity in transform 
domain) and inter-band spectral-correlation (joint-
sparsity) of hyper-spectral images for Gaussian denoising. 
In this work, we propose to learn the joint-sparsity 
promoting dictionary adaptively from the data for impulse 
denoising problems. Unlike dictionary learning 
techniques, the sparsifying dictionary is not learnt in an 
offline training phase. We follow the Blind Compressed 
Sensing (BCS) framework – dictionary learning and 
denoising proceeds simultaneously. The optimization 
problem that arises out of our formulation is solved using 
the Split Bregman approach. The proposed algorithm, 
when compared against prior techniques (on real hyper-
spectral datasets) shows more than 5dB improvement in 
PSNR on average. 
 
Index Terms— Hyper-spectral denoising, Impulse Noise, 
Compressed Sensing, Dictionary Learning. 

1. INTRODUCTION 

Hyper-spectral images are corrupted by different types of 
noise – Gaussian noise, impulse noise and streaking 
artifacts [1]. Strictly speaking, removing streaking 
artifacts is not a denoising problem – it is an inpainting 
problem; we will not discuss it in this work. There are a 
large number of papers on removing Gaussian noise from 
hyper-spectral images [1-3]. All of them exploit the intra-
band spatial redundancy and inter-band spectral 
correlation for removing Gaussian noise.   

Work on impulse denoising for hyper-spectral images 
is limited. Most of the studies in sparse impulse denoising 
are limited to single band images [4-8]. The usual 
technique to remove impulse noise is based on variants of 
median filtering [4, 5]. More recent techniques exploit the 
sparsity of the impulse noise and the sparsity of the image 
in a transform domain to frame an l1-l1 minimization 
problem [6]. The latest techniques [7, 8] learn the 
sparsifying dictionary for the image in an offline training 

phase and apply the learnt dictionary for removing 
impulse noise using l1-l1 minimization. 

One can apply these techniques [4-8] on each of the 
spectral bands (of the hyper-sepctral datacube) separately. 
But such an approach may not yield the best results; since 
it would not account for the inter-band spectral 
correlation.  

Studies in compressive multi-spectral imaging [9-11] 
have shown that the images in different spectral bands 
look very similar to each other and consequently have a 
common sparse (joint-sparsity) support in certain 
transform domains. Following these studies, we will 
exploit the common sparse support of the hyper-spectral 
images while denoising. But instead of assuming the 
images to be sparse in a known basis, we will learn the 
sparsifying basis adaptively from the data following the 
Blind Compressed Sensing (BCS) framework [12]. In the 
past the BCS framework had been successful in dynamic 
MRI reconstruction [13, 14] and EEG signal 
reconstruction [15]. 

In the following section we will briefly review some 
prior studies pertinent to our work. The problem 
formulation will be described in section 3. The 
experimental results will be discussed in section 4. Finally 
the conclusions of the work and future direction of 
research will be discussed in section 5. 

2. LITERATURE REVIEW 

Impulse noise is additive in nature; it affects a few pixels 
but the magnitude of noise is large. The impulse noise 
model can be expressed as: 
y x n= +      (1) 

where x is the clean image, n is additive impulse noise 
(sparse) and y is the corrupted image.  

Median filtering techniques [4, 5] have been 
traditionally used to remove impulse noise; but they only 
show good results when the number of corrupted pixels is 
very small. More recent techniques frame denoising as an 
optimization problem that exploits the sparsity of the 
image in a transform domain. For example in [6], 
denoising is framed as: 

1
min ( )

x
y x TV xλ− +      (2) 
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The l1-norm data fidelity accounts for the sparsity of 
impulse noise where as the TV penalty assumes the image 
to be piecewise linear – leading to a sparse representation 
under finite differencing. 

More recent studies [7, 8] believe that the sparsifying 
dictionary should be learnt adaptively in order to improve 
denoising results. They employ dictionary learning 
techniques to learn the sparsifying dictionary (D) and 
employ the learnt dictionary to remove impulse noise: 

1 1
min

z
y Dz zλ− +     (3) 

Here it is assumed that the image can be represented in a 
sparse fashion in D, i.e. x=Dz; once z is recovered from 
(3), obtaining the image is trivial. 

To the best of our knowledge there has not been any 
work on impulse denoising for hyper-spectral images. 
But, Gaussian noise removal from such images is a well 
studied topic. In fact there are several studies which study 
the problem of compressive hyper-spectral imaging in the 
presence of Gaussian noise [9, 10]. These studies recover 
the image by solving the following optimization problem: 

2

2,1
min T

FZ
Y BW Z Zλ− +     (4) 

where Y is the noise corrupted image, B is the acquisition 
operator, W is the wavelet transform, Z are the wavelet 
coefficients of image stacked as columns of the matrix.    

The Frobenius norm arises owing to the Gaussian 
nature of noise. The l2,1-norm is defined as the sum of the 
l2-norms of the rows. The l2,1-norm penalty assumes that 
the hyper-spectral images have a common sparse support 
in the wavelet transform domain. 

The l2,1-norm with BCS has been used to represent 
common sparse support in other domains as well. For 
example in [15] it is used to recover a multi-channel EEG 
ensemble. BCS has also been used for recovering 
dynamic MRI sequences from partial K-space samples 
[13, 14].  

It must be noted that the BCS framework can only be 
utilized when we try to recover sparse multiple 
measurement vectors (MMV). For single measurement 
vector recovery problems it is not possible to estimate the 
sparsifying dictionary during signal recovery. Because 
estimating the dictionary from a single sample will not be 
robust. 

To summarize the discussion from this section; we 
learn the following from prior studies: 
• Impulse noise is sparse and therefore requires a l1-

norm data fidelity term 

• Hyper-spectral images have a common sparse 
support in transform domain. The l2,1-norm penalty is 
a good choice to exploit the joint-sparsity. 

• Since hyper-spectral images have typically many 
bands, it is possible to learn the sparsifying dictionary 
on the fly (during signal estimation). 

3. PROPOSED DENOISING APPROACH 

We assume each band of the hyper-spectral datacube to 
be corrupted by sparse impulse noise. The noise model is 
expressed as: 

c cy x n= +      (5) 

where c denotes the spectral band. 
In a compact form, this can be expressed as: 
Y X N= +       (6) 
where 1[ | ... | ]CY y y= and 1[ | ... | ]CX x x= assuming C 

bands in all. 
In order to remove noise, we need to exploit the 

spatio-spectral correlation of the hyper-spectral datacube 
(X). If we assume that the image is sparse in wavelet 
domain (W), the recovery can be posed as follows: 

2,11
min T

Z
Y W Z Zλ− +     (7) 

The l1-norm accounts for sparse noise and the l2,1-norm 
accounts for spatio-spectral correlations. Here we abuse 
the notations slightly. The l1-norm is supposed to be 
defined over a vector, but we do not use the ‘vec’ notation 
to keep the expressions uncluttered. 

Following the success of the BCS framework [13-
15], we propose to learn the sparsifying dictionary from 
the data. Wavelet transforms yield a sparse representation 
for different kinds of images; but if we are interested in a 
particular class of images, learning the sparsifying basis is 
likely to yield a sparser representation. We assume that 
the images are row-sparse in a learnt basis D, so that 
X DZ=      (8) 
Therefore, the recovery can be framed as: 

2

1 21 2,1,
min

FZ D
Y DZ Z Dλ λ− + +    (9) 

Here both the dictionary D and the row-sparse coefficient 
matrix Z, need to be learnt. The l2-norm penalty on the 
dictionary is for regularization.  

3.1. Optimization Algorithm 

To the best of our knowledge there are no algorithms 
to solve (9). In this work we follow the Split Bregman 
technique [16] to derive an algorithm to solve the said 
problem. We introduce three proxy variables, P=Y-DZ, 
Q=Z and R=D. We add terms relaxing the equality 
constraints of each quantity and its proxy, and in order to 
enforce equality at convergence, we introduce Bregman 
variables B1, B2, B3 and B4. The new objective function 
turns out to be:  

2

1 21 2,1, , , ,

2 2

1 1 2

2

2 3

min

( )

FZ D P Q R

F F

F

P Q R

P Y DZ B Q Z B

R D B

λ λ

µ µ

µ

+ +

+ − − − + − −

+ − −

  (10) 

The variable splitting allows us to express (10) as an 
alternating minimization of the following (easier) sub-
problems: 
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2 2

1 1 2P1:min ( )
F FZ

P Y DZ B Q Z Bµ µ− − − + − −  

2 2

1 2 3P2:min ( )
F FD

P Y DZ B R D Bµ µ− − − + − −  

2

11
P3:min ( )

FP
P P Y DZ Bµ+ − − −  

2

1 1 22,1
P4:min

FQ
Q Q Z Bλ µ+ − −   

2 2

2 2 3P5:min
F FR

R R D Bλ µ+ − −  

Apart from P3 and P4, the rest are least squares 
minimization problems which can be solved efficiently 
using Conjugate Gradient techniques. The sub-problem 
P3 is an l1-norm regularized least squares problems which 
can be solved via iterative soft thresholding [17]. The 
row-sparse l2,1-norm minimization problem can be solved 
efficiently using the modified iterative Thresholding 
algorithm [18]. 

The final step of the Split Bregman technique is to 
update the relaxation variables: 

1 1B P Y DZ B← − + −   

2 2B Q Z B← − −    

3 3B R D B← − −    

There are two stopping criterions for the Split 
Bregman algorithm. Iterations continue till the objective 
function converges (to a local minima); The other 
stopping criterion is a limit on the maximum number of 
iterations. We have kept it to be 200. 

4. EXPERIMENTAL EVALUATION 

Two hyperspectral datacubes were used for performing 
experiments. One is of Reno city, NV, USA available 
from [19].  This image is from High Resolution Imager 
(HRI) sensor having 2m spatial resolution and 5 nm band 
spacing covering spectral range of 395-2450 nm. The 
second dataset of of Washington DC mall available from 
[20]. This image is of Hyperspectral Digital Imagery 
Collection Experiment (HYDICE) sensor having 1m 
spatial resolution and 10-nm band spacing covering 
spectral range of 400-2500 nm. We used patches of size 
64 × 64 × 64 from both the images for experiments. A 
portion of the pixels were corrupted by salt-and-pepper 
noise.  

As we mentioned before, we are not aware of prior 
studies in hyper-spectral image denoising. Prior studies 
could only remove impulse noise from single band 
images. As a baseline, we have compared our results with 
two such techniques – adaptive median filtering [4] and 
l1-TV [6].  

Our proposed approach is called l2,1-BCS. It required 
specifying several parameters. The parameters were tuned 
on a validation set. For tuning the parameters we 
employed a sub-optimal yet effective strategy based on 
the L-curve method [21]. For the first parameter λ1 we set 
the other parameter (λ2) to zero and use the L-curve 
method to find it. To tune the second parameter λ2, we fix 

λ1 to the obtained value and again use the L-curve method 
to determine λ2. Such a technique, although sub-optimal 
have showed good results in practice before [10, 14, 15]. 
We did not fine tune the parameters and varied them on 
the log scale (100, 10, 1, 0.1 etc.). We obtained the values 
λ1=10 and λ2=10-1. We found these values to be robust to 
changing noise levels.  

Our algorithm requires specifying some hyper-
parameters. The Bregman relaxation variables were 
initialized to unity. The internal variables (μ’s) were fixed 
by trial and error to yield the best results on the validation 
dataset. As before, we only varied the values on a log 
scale. The following values were used: μ=10, μ1=10, 
μ2=103. 

In order to check the effect of learning the sparsifying 
dictionary as opposed to a fixed dictionary we made use 
of (7) for impulse denoising. We assumed that the images 
are sparse in wavelet transform. We used our algorithm to 
solve (7) by putting the parameters and hyper-parameters 
corresponding to the dictionary learning penalty to zeroes. 
We call this formulation (7) as the l1-l2,1 technique. 

Table 1. PSNR after image denoising 
Dataset Noise AMF l1-TV l2,1-

BCS 
l1-l2,1 

WDC 
mall 

10% 31.62 41.09 44.62 38.17 
30% 23.17 39.01 42.78 39.78 
50% 16.78 31.38 35.03 31.94 

Reno 10% 35.98 35.27 47.74 35.61 
30% 25.16 32.57 44.79 33.87 
50% 16.13 29.27 38.16 31.31 

* x% noise means x% of the total pixels are corrupted. 
 
It is not surprising that our proposed method always 

yields the best results. The PSNR from our proposed 
method is significantly better than the rest. This is 
because we exploit the spatio-spectral correlation in the 
hyper-spectral datacube which previous methods [4, 6] do 
not. It must be remembered that we get these results from 
coarse tuning of the parameters (λ1 and λ2); we do not 
vary them with changing noise levels. It may be possible 
to yield even better results by fine tuning them. 

Comparing our method with recovery using fixed 
dictionary (l1-l2,1) shows that, learning the dictionary 
indeed improves the denoising performance. For the 
WDC mall image, the improvement is 5 dB (on average) 
where as for the Reno image the improvement is more 
significant (almost 10 dB on average).  

For small amount of noise (10%) the l1-TV seems to 
yield almost as good a result as l1-l2,1 technique. This is 
because finite differencing (used in the TV norm) has a 
sparser representation compared to wavelets. The 
improved sparsity offsets the advantage of spatio-spectral 
correlation and the l1-TV yields better denoising. 
However, when the noise level increases, exploiting the 
spatio-spectral correlation improves the results and we see 
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slightly better performance by exploiting spatio-spectral 
correlation in the l2,1-l1 method. 

The adaptive median filter can only yield decent 
denoising results when the number of corrupted pixels is 
small. As more pixels are corrupted, median filtering 
fails, since the assumption that the median of the 
neighbourhood is the true value becomes less plausible.  

For visual quality assessment a randomly chosen 
band from the Reno image is shown in Fig. 1. The 
denoising results are shown for 30% noisy pixels. One 
can see that the AMF yields a noisy output. The l1-TV 
method yields an overtly smooth image. With fixed basis 
(l1-l2,1) the image is sharp but consists of denoising 
artifacts. The best result is obtained with our proposed 
method. The recovered image is sharp and bereft of any 
artifact. The denoised image looks as good as the original 
visually. 

 

 

 

 
Fig. 1. 1st Row 1st Column – Original; 1st Row 2nd Column 
– Noisy (30% corrupted pixels); 2nd Row 1st Column – 
Adaptive Mean Filter; 2nd Row 2nd Column – l1-TV; 3rd 
Row 1st Column – Proposed l2,1-BCS; 3rd Row 2nd 
Column – l1-l2,1. 
 

Our proposed formulation is non-convex since the 
variables D and Z appear in a product form. There is no 

guarantee that our algorithm will reach a global minima. 
But it does reach a local minima as can be verified from 
the convergence plot in Fig. 2.  

 
Fig. 2. Convergence of objective function 

5. CONCLUSION 

In this work we addressed the problem of hyper-
spectral image denoising when the images are corrupted 
by impulse noise. To the best of our knowledge this is the 
first work that accounts for spatio-spectral correlation of 
the hyper-spectral datacube for removing impulse noise. 
Motivated by the Blind Compressed Sensing (BCS) 
framework, we learnt a dictionary to sparsify the images 
(accounting for intra-band spatial redundancy) and 
imposed a row-sparsity penalty to account for inter-band 
spectral correlations. Strictly speaking, the denoising 
problem is not a Compressed Sensing topic, since the full 
data is available.   

Our formulation led to a l2,1-norm BCS problem with 
l1-norm data fidelity. We solved the optimization problem 
using the Split Bregman technique. We compared our 
method with previous techniques and showed that our 
method yields about 5dB improvement in PSNR on an 
average.  

We studied the problem of hyper-spectral impulse 
denoising because it had not been addressed before. In 
practice hyper-spectral images are always corrupted by 
mixed Gaussian and impulse noise. In the future, we 
would like to extend our work so as to account for mixed 
noise.  

We believe in reproducible research. The code for 
reproducing the results is currently available upon 
request, but will be available soon in Matlab central. 
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