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ABSTRACT

This paper addresses the problem of impulse dewmpisi
from hyper-spectral images. Impulse noise is sparse
removing impulse noise requires minimizing lamorm
data fidelity term. Prior studies have exploited thtra-
band spatial correlation (leading to sparsity Engform
domain) and inter-band spectral-correlation (joint-
sparsity) of hyper-spectral images for Gaussiaroarg.

In this work, we propose to learn the joint-sparsit
promoting dictionary adaptively from the data fiorpiulse
denoising problems. Unlike dictionary learning
techniques, the sparsifying dictionary is not Iéaman
offline training phase. We follow the Blind Compsesd
Sensing (BCS) framework — dictionary learning and
denoising proceeds simultaneously. The optimization
problem that arises out of our formulation is sdlwssing

the Split Bregman approach. The proposed algorithm,
when compared against prior techniques (on reaéhyp
spectral datasets) shows more than 5dB improveiment
PSNR on average.

Index Terms—Hyper-spectral denoising, Impulse Noise,
Compressed Sensing, Dictionary Learning.

1. INTRODUCTION

Hyper-spectral images are corrupted by differepesyof
noise — Gaussian noise, impulse noise and streaking
artifacts [1]. Strictly speaking, removing streakin
artifacts is not a denoising problem — it is anaimging
problem; we will not discuss it in this work. Theaee a
large number of papers on removing Gaussian noise f
hyper-spectral images [1-3]. All of them exploietimtra-
band spatial redundancy and inter-band spectral
correlation for removing Gaussian noise.

Work on impulse denoising for hyper-spectral images
is limited. Most of the studies in sparse impulsaalsing
are limited to single band images [4-8]. The usual
technique to remove impulse noise is based onmntariaf
median filtering [4, 5]. More recent techniques lekphe
sparsity of the impulse noise and the sparsithefinage
in a transform domain to frame dfl; minimization
problem [6]. The latest techniques [7, 8] learn the
sparsifying dictionary for the image in an offlitr@ining
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phase and apply the learnt dictionary for removing
impulse noise using-l; minimization.

One can apply these techniques [4-8] on each of the
spectral bands (of the hyper-sepctral datacubejratgy.
But such an approach may not yield the best resiiise
it would not account for the inter-band spectral
correlation.

Studies in compressive multi-spectral imaging [9-11
have shown that the images in different spectraldba
look very similar to each other and consequentlyeha
common sparse (joint-sparsity) support in certain
transform domains. Following these studies, we will
exploit the common sparse support of the hyperisplec
images while denoising. But instead of assuming the
images to be sparse in a known basis, we will |¢hen
sparsifying basis adaptively from the data follogvithe
Blind Compressed Sensing (BCS) framework [12].He t
past the BCS framework had been successful in dynam
MRI reconstruction [13, 14] and EEG signal
reconstruction [15].

In the following section we will briefly review san
prior studies pertinent to our work. The problem
formulation will be described in section 3. The
experimental results will be discussed in sectioRidally
the conclusions of the work and future direction of
research will be discussed in section 5.

2. LITERATURE REVIEW

Impulse noise is additive in nature; it affectsew fpixels
but the magnitude of noise is large. The impulsiseao
model can be expressed as:

y=Xx+n )
wherex is the clean image) is additive impulse noise
(sparse) angl is the corrupted image.

Median filtering techniques [4, 5] have been
traditionally used to remove impulse noise; buttbaly
show good results when the number of corruptedipise
very small. More recent techniques frame denoisisigin
optimization problem that exploits the sparsity the
image in a transform domain. For example in [6],
denoising is framed as:

min||y = x|, + ATV (x) )
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The I;-norm data fidelity accounts for the sparsity of
impulse noise where as the TV penalty assumesrthge

to be piecewise linear — leading to a sparse reptatson
under finite differencing.

More recent studies [7, 8] believe that the spyirsif
dictionary should be learnt adaptively in ordeimprove
denoising results. They employ dictionary learning
techniques to learn the sparsifying dictionaB) (and
employ the learnt dictionary to remove impulse apis

min]y - Dz, + 1] ®

Here it is assumed that the image can be represani@
sparse fashion ib, i.e.x=Dz; oncez is recovered from
(3), obtaining the image is trivial.

To the best of our knowledge there has not been any
work on impulse denoising for hyper-spectral images
But, Gaussian noise removal from such images i®la w
studied topic. In fact there are several studieghvbtudy
the problem of compressive hyper-spectral imagmthe
presence of Gaussian noise [9, 10]. These stud@s/er
the image by solving the following optimization ptem:

. 2
min|Y -BW'Z|_ +4|z|,, (4)
whereY is the noise corrupted image,s the acquisition
operator,W is the wavelet transforn¥ are the wavelet
coefficients of image stacked as columns of theimat

The Frobenius norm arises owing to the Gaussian
nature of noise. Thi;-norm is defined as the sum of the
I,-norms of the rows. Thkj-norm penalty assumes that
the hyper-spectral images have a common sparseupp
in the wavelet transform domain.

The I,3-norm with BCS has been used to represent
common sparse support in other domains as well. For
example in [15] it is used to recover a multi-chelnBEG
ensemble. BCS has also been used for recovering
dynamic MRI sequences from partial K-space samples
[13, 14].

It must be noted that the BCS framework can only be
utiized when we try to recover sparse multiple
measurement vectors (MMV). For single measurement
vector recovery problems it is not possible toreate the
sparsifying dictionary during signal recovery. Besa
estimating the dictionary from a single sample wdt be
robust.

To summarize the discussion from this section; we
learn the following from prior studies:

e Impulse noise is sparse and therefore requirts a
norm data fidelity term

e Hyper-spectral images have a common sparse
support in transform domain. Thg-norm penalty is

a good choice to exploit the joint-sparsity.

* Since hyper-spectral images have typically many
bands, it is possible to learn the sparsifyingidiry

on the fly (during signal estimation).
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3. PROPOSED DENOISING APPROACH

We assume each band of the hyper-spectral dataoube
be corrupted by sparse impulse noise. The noiseshisd
expressed as:

Ye =X N

wherec denotes the spectral band.

In a compact form, this can be expressed as:
Y=X+N (6)
where Y =[y,]...]y. ]JandX =[x, |...|x. Jassuming C
bands in all.

In order to remove noise, we need to exploit the
spatio-spectral correlation of the hyper-spectathdube
(X). If we assume that the image is sparse in wavelet
domain W), the recovery can be posed as follows:

mZinHY —szH1 +1|zZ|,, (7)

The I;-norm accounts for sparse noise and lthenorm
accounts for spatio-spectral correlations. Herealvase
the notations slightly. Thé;-norm is supposed to be
defined over a vector, but we do not use the ‘vetation
to keep the expressions uncluttered.

Following the success of the BCS framework [13-
15], we propose to learn the sparsifying dictionfiom
the data. Wavelet transforms yield a sparse reptaten
for different kinds of images; but if we are intsted in a
particular class of images, learning the sparsifyiasis is
likely to yield a sparser representation. We asstima¢
the images are row-sparse in a learnt basiso that
X =Dz
Therefore, the recovery can be framed as:

min|Y -bZ], + 4[], + 4. |D[;

(®)

(8)

©)
Here both the dictionar®p and the row-sparse coefficient
matrix Z, need to be learnt. THg-norm penalty on the
dictionary is for regularization.

3.1. Optimization Algorithm

To the best of our knowledge there are no algosthm
to solve (9). In this work we follow the Split Bregn
technique [16] to derive an algorithm to solve swd
problem. We introduce three proxy variabl®s;Y-DZ,
Q=Z and R=D. We add terms relaxing the equality
constraints of each quantity and its proxy, andritter to
enforce equality at convergence, we introduce Beegm
variablesB;, B,, B; and B,. The new objective function
turns out to be:

min

min [P, + A Q]+ A RI:
+u[P-(Y-D2)- B} +4|Q-Z-B,[;
+44,[|R-D - BsHi

The variable splitting allows us to express (10pas

alternating minimization of the following (easiesub-
problems:

(10)



PL:minu|P- ¥ ~DZ )-8} +14|Q-Z-B)|;
P2:minu|P -t -DZ )~ B +4[R-D-Bj;
P3:min|Pl, + [P~ ¢ -DZ - B[}
P4:mini, Q] , + 4[Q~Z ~ B}

ps:mind, R +41,[R-D-B,J:

Apart from P3 and P4, the rest are least squares
minimization problems which can be solved efficignt
using Conjugate Gradient techniques. The sub-pnoble
P3 is arl;-norm regularized least squares problems which
can be solved via iterative soft thresholding [1The
row-sparsd,;-norm minimization problem can be solved
efficiently using the modified iterative Threshaldi
algorithm [18].

The final step of the Split Bregman technique is to
update the relaxation variables:

B, - P-Y+DZ-B
B, - Q-Z-B,
B, - R-D-B,

There are two stopping criterions for the Split
Bregman algorithm. Iterations continue till the extijve
function converges (to a local minima); The other
stopping criterion is a limit on the maximum numlzér
iterations. We have kept it to be 200.

4. EXPERIMENTAL EVALUATION

Two hyperspectral datacubes were used for perfgmin
experiments. One is of Reno city, NV, USA available
from [19]. This image is from High Resolution Ingag
(HRI) sensor having 2m spatial resolution and Strand
spacing covering spectral range of 395-2450 nm. The
second dataset of of Washington DC mall availatenf
[20]. This image is of Hyperspectral Digital Imager
Collection Experiment (HYDICE) sensor having 1m
spatial resolution and 10-nm band spacing covering
spectral range of 400-2500 nm. We used patchegzef s
64 x 64 x 64 from both the images for experimeAts.
portion of the pixels were corrupted by salt-angqm
noise.

As we mentioned before, we are not aware of prior
studies in hyper-spectral image denoising. Priodiss
could only remove impulse noise from single band
images. As a baseline, we have compared our resittts
two such techniques — adaptive median filtering 4a4¢l
[-TV [6].

Our proposed approach is called-BCS. It required
specifying several parameters. The parameters twassl
on a validation set. For tuning the parameters we
employed a sub-optimal yet effective strategy based
the L-curve method [21]. For the first paramétewe set
the other parametenf) to zero and use the L-curve
method to find it. To tune the second paramggewe fix

1262

) to the obtained value and again use the L-curvibode
to determiné\,. Such a technique, although sub-optimal
have showed good results in practice before [10,15#
We did not fine tune the parameters and varied tham
the log scale (100, 10, 1, 0.1 etc.). We obtaihedvalues
M=10 and\,=10". We found these values to be robust to
changing noise levels.

Our algorithm requires specifying some hyper-
parameters. The Bregman relaxation variables were
initialized to unity. The internal variableg’¢) were fixed
by trial and error to yield the best results on\hkdation
dataset. As before, we only varied the values doga
scale. The following values were use@=10, =10,
u22103.

In order to check the effect of learning the spigirsy
dictionary as opposed to a fixed dictionary we made
of (7) for impulse denoising. We assumed that thages
are sparse in wavelet transform. We used our dhgorio
solve (7) by putting the parameters and hyper-patara
corresponding to the dictionary learning penalty¢coes.
We call this formulation (7) as thelk ; technique.

Table 1. PSNR after image denoising

Dataset| Noise| AMF 4TV l51- l1-121
BCS
WDC 10% 31.62 41.09 | 44.62 38.17
mall 30% 23.17 39.01 | 42.78 39.78
50% 16.78 31.38 | 35.03 31.94
Reno 10% 35.98 35.27| 47.74 35.61
30% 25.16 32.57 | 44.79 33.87
50% 16.13 29.27 | 38.16 31.31

* x% noise means x% of the total pixels are comrdpt

It is not surprising that our proposed method akvay
yields the best results. The PSNR from our proposed
method is significantly better than the rest. Tiés
because we exploit the spatio-spectral correlatiothe
hyper-spectral datacube which previous method&][dp
not. It must be remembered that we get these sefolin
coarse tuning of the parametefs énd2,); we do not
vary them with changing noise levels. It may besjide
to yield even better results by fine tuning them.

Comparing our method with recovery using fixed
dictionary (h-l,1) shows that, learning the dictionary
indeed improves the denoising performance. For the
WDC mall image, the improvement is 5 dB (on aveyage
where as for the Reno image the improvement is more
significant (almost 10 dB on average).

For small amount of noise (10%) theTlV seems to
yield almost as good a result ad,l; technique. This is
because finite differencing (used in the TV normay la
sparser representation compared to wavelets.
improved sparsity offsets the advantage of spatessal
correlation and the ATV vyields better denoising.
However, when the noise level increases, exploithg
spatio-spectral correlation improves the results\aa see
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slightly better performance by exploiting spatiespal
correlation in the,l;-1; method.

The adaptive median filter can only yield decent
denoising results when the number of corrupted|piie
small. As more pixels are corrupted, median fittgri
fails, since the assumption that the median of the
neighbourhood is the true value becomes less (lizusi

For visual quality assessment a randomly chosen
band from the Reno image is shown in Fig. 1. The
denoising results are shown for 30% noisy pixelae O
can see that the AMF yields a noisy output. Th&M
method yields an overtly smooth image. With fixexsis
(I1-1,41) the image is sharp but consists of denoising
artifacts. The best result is obtained with ourposed
method. The recovered image is sharp and beredngf
artifact. The denoised image looks as good as tiignal
visually.

L
Fig. 1. £'Row T Column — Original; ¥ Row 2 Column
— Noisy (30% corrupted pixels);"2Row ' Column —
Adaptive Mean Filter; ® Row 2" Column — |-TV; 3"
Row T Column - Proposed,$BCS; 3 Row 2"
Column — |-l 5.

Our proposed formulation is non-convex since the
variablesD andZ appear in a product form. There is no
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guarantee that our algorithm will reach a globahima.
But it does reach a local minima as can be verifieth
the convergence plot in Fig. 2.

g

Objective function

L L L
0 10 20 30 40 50 B0 70 80 a0
Iteration number

Fig. 2. Convergence of objective function
5. CONCLUSION
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In this work we addressed the problem of hyper-
spectral image denoising when the images are dedup
by impulse noise. To the best of our knowledge ithihe
first work that accounts for spatio-spectral catiein of
the hyper-spectral datacube for removing impulsiseno
Motivated by the Blind Compressed Sensing (BCS)
framework, we learnt a dictionary to sparsify theages
(accounting for intra-band spatial redundancy) and
imposed a row-sparsity penalty to account for Huand
spectral correlations. Strictly speaking, the dsingj
problem is not a Compressed Sensing topic, sireduth
data is available.

Our formulation led to & ;-norm BCS problem with
I;-norm data fidelity. We solved the optimization iplem
using the Split Bregman technique. We compared our
method with previous techniques and showed that our
method yields about 5dB improvement in PSNR on an
average.

We studied the problem of hyper-spectral impulse
denoising because it had not been addressed béfore.
practice hyper-spectral images are always corrupted
mixed Gaussian and impulse noise. In the future, we
would like to extend our work so as to accountrfoxed
noise.

We believe in reproducible research. The code for
reproducing the results is currently available upon
request, but will be available soon in Matlab caintr
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