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ABSTRACT

In this paper, we propose a novel image compression ap-

proach towards visual quality rather than pixel fidelity. We

intentionally remove several blocks at the encoder and re-

construct them at the decoder to get bits reduction. The

removal blocks are wisely and adaptively selected based

on blocks clustering, patch similarity and removal priority.

A well-suited similarity measurement is defined to capture

the common pattern between patches as well as tell their

substitutability based on boundary consistency. To assist

the removal blocks reconstruction at the decoder, we extract

some dense descriptors as the side information to the decoder.

Encouraging experimental results show that our compression

scheme achieves up to 20.26% bits reduction with a compara-

ble visual quality compared to the most recent standard High

Efficiency Video Coding (HEVC).

Index Terms— Image compression, dense descriptors,

similarity measurement, image reconstruction

1. INTRODUCTION

With the explosive growth of the Internet and social web-

sites over the past a few years, ubiquitous images and videos

available online have bring enormous pressures as well as

challenges to the traditional compression system. Nowadays,

many efforts have been made to explore new directions [1] of

compression system towards visual quality rather than pixel

fidelity which considered by the existing compression stan-

dards such as JPEG [2] and HEVC [3]. With the development

of computer vision, machine learning and cloud computing,

several methods and techniques such as segmentation [4], col-

orization [5], sparsity [6] and saliency detection [7] as well as

the active learning and semi-supervised learning are utilized

to achieve the bit reduction while maintaining the visual qual-

ity of images or videos at the same time.

Recently, there is emerging a new direction to solve the

image compression problem with the image inpainting tech-

nique [8] [9]. The basic idea is to intentionally remove several

blocks at the encoder, while recovering them at the decoder by

image inpainting. Since the source image is available at the

encoder, the inpainting based image compression is actually

different from the traditional image inpainting problem at two

aspects: 1) the removal blocks to restore at the decoder can be

actively selected at the encoder; 2) various features of the re-

moval blocks can be extracted as the side information to guide

the inpainting at the decoder. However, it remains difficult is-

sues how to select the removal blocks and which features are

capable of capturing the characteristics of the blocks.

Our previous work [6] selects the removal blocks by min-

imizing the reconstruction error with the preserved blocks,

where the cost function is more objective with pixel fidelity

than with the visual quality. Dong Liu et al. [10] preserves the

blocks locating at the ends and intersections of edges, while

removing the blocks far away from edges. They extract the

location of edges as the side information to the decoder. Be-

sides the edges, other features such as histograms, sketches

and epitomes derived from source image can also assist in-

painting as well. But these features only provide sparse de-

scriptors of image blocks and may also not be accurate them-

selves. Considering that similar patches are highly correlated

and contain a lot of high order statistics, we directly utilize

the similar patch as dense descriptors to depict and help to

restore the removal blocks.

In this paper, we propose a novel image compression ap-

proach by intentionally removing several blocks at the en-

coder and reconstructing them at the decoder. The removal

blocks are wisely and adaptively selected based on both patch

similarity and feature analysis. To guide the removal blocks

reconstruction at the decoder, some side information are ex-

tracted at the encoder. The experiments demonstrate that our

approach successfully reduces the bit rate up to 20.26% while

maintains a comparable visual quality compared to HEVC.

The remainder of this paper is organized as follows. Sec-

tion 2 is the overview of our proposed image compression

method. Section 3 describes the strategies of removal blocks

selection and side information extraction. Section 4 describes

the image restoration method. Section 5 and 6 provides ex-

perimental results and conclusion respectively.

2. THE PROPOSED IMAGE CODING APPROACH

This section gives a brief overview of our proposed image

compression algorithm. As illustrated in Fig. 1, the original

image is divided into the removal blocks and the preserved

blocks. In our approach, the preserved blocks are encoded
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Fig. 1. The flowchat of proposed image compression scheme.

and decoded with the standard coding method, such as JPEG

and HEVC. By analyzing the original image, we further cat-

egory the removal blocks into two classes:similar blocks and

additional blocks. For the similar blocks, we extract some

dense descriptors as side information to the decoder. As the

side information captures statistic characteristics of the simi-

lar blocks, it assists the restoration of them from the decoded

preserved blocks. For the additional blocks, we just remove

and infer them from the decoded preserved blocks and similar

blocks at the decoder.

3. IMAGE ANALYSIS AND BLOCKS REMOVAL

In this section, we analyze the original image to extract the

side information and obtain the removal regions, i.e., the sim-

ilar blocks and the additional blocks respectively. In typi-

cal inpainting scenarios, the restoration of unknown region is

usually an ill-posed problem because information in missing

region is totally unknown, especially for the unknown region

containing rich structures. Taking Fig. 2 as an example, the

area to be restored consists of two homogenous regions divid-

ed by an edge denoted by the solid curve. The dashed curve

is the inferred edge with diffusion based inpainting, which is

quite different from the actual one. Besides, the human eyes

are more sensitive to the structure difference than the texture

difference. Therefore, we prefer to keep the structure of the

image by considering its difficulty to recover and importance

for human visual system.

3.1. Feature based image blocks classification

At the encoder side, we firstly classify the original image

blocks into two categories: structure blocks and texture block-

s. The structure block usually contains features like edges and

corners. An edge depicts the boundary of two objects. A cor-

ner can be defined as the intersection of two edges. A corner

can also be defined as a point for which there are two domi-

nant and different edge directions in a local neighborhood of

the point. A block contains edge and corner also includes the

transition of two or more objects. Here, we apply the canny

edge detection [11] and harris corner detection [12] algorithm

to the Y , U , V components of the original image separately to

extract the structure features. The corresponding binary map-

s are denoted as EY , EU , EV and CY , CU , CV . For each

block Bi, we calculate the numbers of edge pixels Ne(Bi)

Actual edge

Infered edge

Fig. 2. The edge inferred by inpainting.

and corner pixels Nc(Bi) in it, which are

Ne(Bi) = #{p|p ∈ Bi, EY (p) = 1||EU (p) = 1||EV (p) = 1},
(1)

Nc(Bi) = #{p|p ∈ Bi, CY (p) = 1||CU (p) = 1||CV (p) = 1}.
(2)

If the number of edge pixels or corner pixels is greater than

a threshold, then the block is a structure block. The label of

each block is determined by the discriminant equation:

label(Bi) =

{

structure, if Ne(Bi) ≥ t1 or Nc(Bi) ≥ t2
texture, otherwise

(3)

3.2. Similar block and patch pairs selection

Although we wish to preserve the structure regions after we

divide the image into structure and texture two parts, there are

some redundancies that we can further exploit in the structure

regions. As the existing of spatial redundancy in the image, it

is possible for several blocks highly similar to some patches.

In order to efficiently exploit the spatial redundancy, we can

remove these blocks while maintaining their corresponding

similar patches to assist the restoration. At the decoder, we

wish to recover the removal regions such that it looks just like

the original one and is consistent with the preserved regions at

the boundary. For selecting the removal blocks, a well-suited

similarity measurement is necessary to capture the common

pattern between patches as well as tell their substitutability

given the same neighbors or boundary.

We incorporate color information consistency, pattern

consistency, boundary consistency into our algorithm. In this

paper, all the blocks and patches are with the same size, which

is always square and fixed. Instead of using SSD, we define

the distance between block Bp and patch Ψq as follows:

d(Bi,Ψj) = λ1Dc(Bi,Ψj)+λ2Dp(Bi,Ψj)+λ3Db(Bi,Ψj),
(4)

where λ1, λ2, λ3 are positive weighting factors and λ1+λ2+
λ3 = 1. Dc(Bi,Ψj) is actually the SSD which reflects the

difference of color information,

Dc(Bi,Ψj) =
∑

x∈Ω

|fBi
(x)− fΨj

(x)|2, (5)

where Ω is a square window of the block size in the image,

and fBi
(x) and fΨj

(x) is the intensity value of the pixel in

the region Bi and Ψj at the corresponding location of x ∈ Ω.
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Dp(Bi,Ψj) is the difference between the gradients of patches

which reflects the pattern consistency.

Dp(Bi,Ψj) =
∑

x∈Ω

| ▽ fBi
(x)−▽fΨj

(x)|2, (6)

where ▽· = [ ∂·
∂x

, ∂·
∂y

]T is the gradient operator. Db(Bi,Ψj)
is the distance to measure the continuity of the isophotes at

the boundaries. We replace Bi by Ψj and calculate the av-

erage changes of the Laplacian estimator along the tangent

direction [13] at the interior boundary, as shown in (7).

Db(Bi,Ψj) =
∑

x∈∂−Ω

|
▽(△f(x))

| ▽ (△f(x))|
·
▽⊥f(x)

| ▽⊥ f(x)|
| × |▽f(x)|

(7)

where ∂−Ω is the interior boundary of Ω.
▽(△f(x))
|▽(△f(x))| s-

tands for the normalized gradient of the Laplacian estima-

tor, which depicts the changes of the Laplacian estimator, and
▽⊥f(x)
|▽⊥f(x)| is the normalized vector along the tangent direction.

The inner product measures the change of the Laplactian esti-

mator along the tangent direction. | ▽ f(x)| is an edge adap-

tive weight to give a larger penalty for the intensive edge and

a smaller penalty for the weak edge. If the edge is intensive,

the changes along the tangent direction should be small. If

the edge is weak, the changes along the tangent direction is

allowed to be large. In other words, the boundary of Bi and

Ψj should be consistency especially at the intensive edges.

The similarity measurement is thus defined as follows:

s(Bi,Ψj) = e

−d(Bi,Ψj)

2σ2
1 . (8)

For each block Bi in the structure regions Is, we search

for its most similar patch Ψi∗ in the structure region without

intersection with the block itself as Ψi∗ = argmaxΨj
s(Bi,Ψj),

such that Ψj ⊂ Is and Bi ∩ Ψj = ∅. We select the block-

patch pairs with similarity s(Bi,Ψi∗) greater than a threshold

Th. The block in a pair is called a similar block and we

extract the displacement vector of its corresponding most

similar patch as the side information. Similarly, we can also

exploit the redundancies in texture regions by finding similar

blocks and their corresponding patches.

3.3. Additional blocks selection

Besides the redundancy among similar blocks, it still exists

lots of redundancy among the remaining texture blocks which

means we can further remove some texture blocks. We de-

fine a removal priority term P for each remaining block. The

block with highest removal priority will be selected as an ad-

ditional block. We consider two factors into the removal pri-

ority term in (9): the existing status of the block neighbours,

the texture complexity of the block.

P (Bi) = (
∑

Bk∈N4(Bi)

map(Bk) + c) · exp(−
var(Bi)

2σ2
2

) (9)

where N4(Bi) is the four neighborhood of block Bi, and

map(Bk) depicts the weight that the existing status of a block

providing to its neighbouring block’s removal priority, which

is defined as (10) for the different status of a block. If a neigh-

bouring block of Bi is missing, then the removal priority of

Bi become lower for preventing the removal region merge in-

to a large hole, and vice versa. c is a bias to make sure the

removal priority positive.

map(Bk) =



















1 , if Bk is a preserved block

−3 , if Bk is an additional block

s(Bk,Ψk∗) , if Bk is a similar block

0 , otherwise

(10)

We utilize variance to measure the texture complexity of

a block, as the second term in (9). Iteratively select the block

with highest removal priority term and update the priority s-

cores for the remaining blocks until a pre-set additional re-

moval rate r is given. We call all the selected blocks as the

additional removal blocks. They will be skipped at the en-

coder. Besides the similar blocks and additional blocks, the

remaining blocks are preserved and encoded by standard cod-

ing method.

4. IMAGE RECONSTRUCTION

4.1. Similar blocks reconstruction with refinement

At the decoder, after we decode the preserved blocks and the

side information, which are the displacement vectors indicat-

ing the location of the corresponding most similar patches for

the similar blocks. A straightforward method to reconstruc-

t the removed similar blocks is to directly copy the pixels

from their corresponding patches. Because of the absence of

the motion compensated residue, the visible blocking artifacts

will exist in the reconstructed image. To get a consistent visu-

al quality, we refine the reconstruction of the removed similar

blocks using partial differential equation and formulate the

problem as an optimization problem.

min
f(x)

∑

x∈Ω | ▽ f(x)−▽g(x)|2 (11)

s.t. ∀x ∈ ∂Ω, f(x) = f∗(x)

where ▽g(x) is the gradient of the corresponding most simi-

lar patch whose location is indicated by the side information,

f∗(x) is the known decoded pixel values. The cost function

means that we wish the gradients of the unknown region sim-

ilar to its corresponding most similar patch. The constraint

forces the pixel values at the boundary of the removal similar

block the same with its neighboring known pixel values. We

solve this problem with Euler-Lagrange equation.

4.2. Additional blocks restoration with global inpainting

We use a global inpainting [14] method to reconstruct the ad-

ditional removal blocks. The unknown regions are updated
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Table 1. Bit-saving compared to HEVC intra coding (QP=22)

Test Overhead Bit-rate(bpp) Bits saving

Sequence Side info. Blocks ind. Proposed HEVC Raw Pure

PeopleOnStreet 2.29% 0.45% 0.7875 0.8671 11.91% 9.17%

Kimono 5.53% 0.92% 0.3414 0.4282 26.71% 20.26%

BasketballDrive 5.49% 0.80% 0.4214 0.4941 21.00% 14.71%

BasketballDrill 1.26% 0.38% 0.8673 1.0216 16.74% 15.10%

pixel by pixel. Each pixel in the unknown regions is con-

tained by several patches. For each patch, we choose a can-

didate value from its most similar patch at the corresponding

current unknown pixel location. Then the current unknown

pixel is updated by the weighted average of the several candi-

date values. The pixel values are iteratively updated until they

converge or a pre-set iterative time reaches.

5. EXPERIMENTAL RESULTS

The proposed method can be applied to any block-based

video compression scheme. In this paper, we implemen-

t the proposed algorithm in HEVC reference software H-

M12.0 [15]. The side information and removal blocks indica-

tors are encoded into the bitstream using arithmetic coding.

The performance of several standard video test sequences

with different resolution are evaluated using intra main con-

figuration. Specifically, we set the size of largest coding

unit(LCU) to 16 × 16. Four quantization parameters are

tested:22, 27, 32, 37. Three threshold Th: 0.3, 0.5, 0.7

and three additional removal rate r: 0.05, 0.1, 0.2 are test-

ed for each sequence. In all the following experiments,

the parameters t1, t2, λ1, λ2, λ3, σ1, σ2 and c are set to

20, 1, 0.6, 0.2, 0.2, 2, 4 and 13 respectively.

Table. 1 lists the bits reduction results of the first frame of

four test sequences with QP = 22, Th = 0.3 and r = 0.05,

compared to HM12.0. It shows that the proposed method

saves considerable bits for all test images which is up to

20.26%. Fig. 3 shows the visual quality of the same images

and same parameter settings as that in Table. 1. The left col-

umn is the incomplete images with region removal, where the

removal regions are indicated by the green mask; the middle

column are the decoded images by the proposed method;

and the right column are the decoded images by HEVC intra

coding. It is shown that the decoded images by the proposed

method and that by HEVC intra coding have comparable vi-

sual quality. Combining the bits reduction results in Table. 1

and the visual quality results in Fig. 3, it is concluded that

the proposed method achieves great bits reduction with a

comparable visual quality compared to HEVC.

Table. 1 also lists the overhead consumption of the pro-

posed method, i.e., the bits for side information and removal

blocks index. We can see that the bits consumed by side in-

formation is much more than the removal blocks index. When

Th and r are fixed for an image, the overhead are fixed. An-

Fig. 3. Visual quality comparisons between the proposed

scheme and HEVC. Image with removal regions(left), decod-

ed images by the proposed method (middle) and by HEVC

(right). From top to bottom: PeopleOnStreet, Kimono, Bas-

ketballDrive, BasketballDrill.
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Fig. 4. Raw bits saving for different QP.

alyzing the experimental results of Fig. 4, we can see: (1)

When QP increases, the pure bits reduction will decreas-

es. Firstly, the residue consumes fewer bits in HEVC when

QP increases, thus removing the residue will save fewer bit-

s. Moreover, the percentage of the overhead bits increases as

the total overhead bits stay the same with different QP. (2)

If the image contains rich smooth regions, the bits reduction

is smaller, such as PeopleOnStreet. Because smooth region-

s are efficiently compressed by HEVC. While for the image

containing rich similar or repeated texture regions, the bits

reduction is larger. Because these blocks are difficult to com-

press by HEVC but removed in the proposed encoder and well

inferred at the decoder.

6. CONCLUSION

In this paper, an image compression scheme based on several

blocks removal at the encoder and reconstruction at the de-

coder with side information is introduced. Experiments show

that our proposed scheme achieves up to 20.26% bit rate re-

duction with a comparable visual quality compared to HEVC.
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