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ABSTRACT

In this paper, we propose a novel dense correspondence based
prediction approach to reduce the inter-image redundancy for
image set compression. Unlike previous methods, we manage
to utilize the dense correspondence to predict and parameter-
ize the inter-image relation and then reconstruct a new refer-
ence for the subsequent HEVC inter-prediction and encoding.
Comparing to relevant state-of-the-art feature-based methods,
our method is able to locally approximate the inter-image
relation and thus more robust to complex local variations. Ex-
perimental results show that our proposed approach achieves
better coding gains when the local variations are dominant.

Index Terms— Dense correspondence based prediction,
image set compression, reference reconstruction, HEVC

1. INTRODUCTION

Over the past few years the image set compression for the
cloud-based storage begins to attract more and more atten-
tions. Due to the existence of inter-image redundancy, it’s
feasible to compress the image set together at a higher ratio
than encode them using the individual coding approaches, like
JPEG [1] or HEVC intra image coding [2].

At the beginning the samples for image set compression
are mostly collected from the specific fields, like medical and
satellite imagery. The images are well-aligned and the inter-
image variations normally exist in the pixel-to-pixel sense. To
reduce the inter-image redundancy the widely used methods
are the prediction encoding of the image differences by di-
rectly subtracting the images with their references. The prob-
lems are mostly concerned with the anchor reference image
generation and similar images clustering [3][4].

When it comes to more complex wild image sets like per-
sonal photo albums, the direct image subtraction results may
be even larger than the original ones. Therefore, the sub-
sequent work mostly adopted the video-like encoding way to
reduce the inter-image redundancy using video coding tech-
niques. Au et al [5] proposed the inter prediction in video
coding with Global Motion Compensation and Local Motion
Compensation in the given similar image set, and Zou et al [6]
proposed Minimal Spanning Tree (MST) encoding structure
with depth control to achieve better coding gain for the entire
set and fast random access as well. They both formulated the
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images into video-like sequences and compress them using
video inter-prediction coding. However, in their image sets
the close temporal correlation and viewpoint changes can be
searched out similar to real video sequences. In other image
sets with larger variations these methods can be limited.

To deal image sets with larger viewpoint differences like
multi-view images, Shi ef al [7] proposed a multi-model pre-
diction method to explore the inter-image correlation in the
major planar regions. With the global geometric deformation
and photometric transformation, multiple new reference im-
ages are generated from the original reference to better pre-
dict the current image. In this way the Block-based Motion
Estimation and Compensation (BME & BMC) in HEVC will
be more likely to explore and utilize appropriate prediction
from the multiple reference images. However, the SIFT-based
global photometric transformation is not always effective be-
cause the feature keypoints are normally sparse and not suffi-
cient enough for reliable luminance adjustment, and also the
global geometric deformation is not always effective to deal
with local variations.

In this paper, we propose a novel dense correspondence
based prediction approach to achieve robust luminance ad-
justment and comparable geometric transformation perfor-
mance comparing to the state-of-the-art. We first adopt the
dense correspondence based prediction approach to estimate
the consistent pixel-to-pixel relation via the fast-convergent
random searching, and then parameterize the correspondence
results in the selected units individually. After the para-
meterization a new reconstructed reference is reconstructed
by geometric transformations and luminance adjustments.
Finally the inter-prediction and encoding process in HEVC
inter coding [2] is utilized to further reduce the local varia-
tions with predictions from the reconstructed reference. Since
the correspondence in our approach is dense, we are able to
transform the reference image in the local units and there
are much more matched pixels for the reliable luminance
adjustment. Therefore, luminance adjustment results in local
regions are more robust than the global transformation.

The rest of the paper is organized as the following: Sec-
tion 2 gives the overview of our scheme. Section 3 intro-
duces the dense correspondence based prediction and Section
4 presents the new reference reconstruction. Experimental re-
sults are shown in Section 5 with performance evaluation and
Section 6 is the conclusion and future work.
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2. OVERVIEW OF OUR SCHEME

The image set compression can be classified into two parts:
image set encoding structure and image pair compression.
The encoding structure for the entire image set strongly relies
on the image pair encoding approach. As we can find in
[6][8], they have chosen different encoding structure genera-
tion method because only the similarity metric aligned with
image pair compression approach can achieve the optimal
encoding structure for the entire set. In this paper we mainly
focus on the image pair compression approach to exploit the
inter-image redundancy and the encoding structure will be
presented in our future work.
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Fig. 1. Framework of image pair compression with dense cor-
respondence based prediction

The framework of our image pair compression approach
is shown in Fig 1. The purpose is to encode the current image
I. using less bitrate with the prediction from the reference
image I, in the given image pair. The dense correspondence
between I, and I, is estimated firstly. Normally it’s pretty
hard to utilize the dense matching approach like the SIFT
flow [9]. These kinds of dense correspondence are non-
parameterized and uneconomical as the Side Information (SI)
for encoding. In our method, the dense correspondence based
prediction between I. and I, is constrained to be consistent
and thus appropriate for effective parametrization. After
the correspondence estimation we estimate the correlation
parameters in the non-overlapped units via the widely used
RANSAC [10] algorithm. Then the new reference I, is
reconstructed by geometric transformations and luminance
adjustments in the selected units for the following BME &
BMC in the next stage.

In the second stage, the reconstructed reference I, is
transmitted to the decoded picture buffer for BME & BMC
in HEVC. The reconstructed reference works as a better can-
didate for inter-image prediction. Thus the current image I is
encoded with the prediction from the reconstructed reference
in the same way as video inter-prediction coding and formu-
lated into the bitrate with the necessary parameters as SI. For
the /. decoding, the new reference I,.. will be reconstructed
again from the reference image I, and works as the prediction
reference for 1.

3. DENSE CORRESPONDENCE BASED
PREDICTION

One of the most important advantages using dense correspon-
dence is that the estimated pixel-to-pixel relation makes it fea-
sible to reconstruct new reference in the local regions, while
the sparse feature-based methods are normally limited to the
global transformations. Generally, it’s impractical to directly
apply the BME in video coding to the dense correspondence
searching of translations, rotations, and scales in the whole
range of reference image due to the huge computation in-
crease. However, if we choose the overlapped blocks divi-
sion scheme rather than the non-overlapped scheme, the ad-
jacent blocks will gain much stronger correlation and their
motion estimation results thus will be similar. The neighbor-
hood coherence plays an important role in the fast-convergent
solution for the following searching problem. Here we use
the left-top pixels of the blocks to denote the corresponding
blocks. Then the overlapped block mapping estimation prob-
lem in the range of whole reference image is formulated into
the following objective function minimization:

min E =Y~ MSE(I.(Ci;), I.(Ri;)) (1)
Rij =A- Cij
scale - cos(0) sin(0) X
A= —sin(0) scale - cos() 'Y
0 0 1

where E is the total error energy, MSE is the Mean Squared
Error of the two corresponding blocks, Cj; is the block coor-
dinates in the current image I, at (i, j), R;; is the correspond-
ing block coordinates in the reference image I, m and n is the
number of rows and columns of all overlapped blocks in 7., A
is the affine matrix including four parameters (X, Y, 0, scale)
describing the mapping relation for each block.

While the problem is still hard to solve, the Generalized
PatchMatch (GPM) Algorithm [11] offers the practical, fast-
convergent solution with iterations of neighborhood propaga-
tion and random searching, but the neighborhood propagated
searching results are always distributed in the whole range
of I, and also not consistent due to its greedy collaboratively
gradient-descent searching. Here we adopt Yoav Hacohens
[12] solution to compromise greedy minimization of E to
achieve consistent matching by combining the GPM method
with local consistency checks as the following Algorithm 1.

While in the GPM algorithm the natural coherence among
overlapped blocks works as weak constraints for the neigh-
borhood propagation and has no guarantee for consistent re-
sults, here the additional consistency checks are targeted to
remove inconsistent mapping results in neighbor pixels and
local regions, and then the left consistent results are kept as
the initialized relation map for another round of GPM. By
narrowing down the parameter searching ranges at the same
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Algorithm 1 GPM with consistency checks
1: GPM initialization
2: for Parameter range from coarse to fine do
3: GPM convergent searching results
Consistency checks:
Neighbor pixel consistency check
Local random region consistency check
Small regions elimination
Narrow parameter range (X,Y, 8, scale)

® DR

time, the following round of GPM always produces more con-
sistent results in the region sharing similar content. At last we
keep the final consistent results as the prediction results for
the new reference reconstruction as shown in Fig 2 (a) and
(b). For the implementation details of the dense correspon-
dence with consistency checks, the reader can refer to [12].

4. NEW REFERENCE RECONSTRUCTION

We utilize the square unit division scheme to parameterize
the consistent prediction results adaptively in the local region.
By partitioning the matched pixels of the current image I,
into regular non-overlapped units, the correlation in each unit
pair is approximated by using homograph transformation, and
the subsequent luminance adjustment is used to balance the
luminance variations in each unit. The new reference image
is thus reconstructed with the selected units transformed from
the original reference image. The reference reconstruction
process is shown in Fig 2.

The new reconstructed reference I,,. has the same reso-
lution as I, and the coordinates are partitioned into regular
non-overlapped 256 x 256 units from the left-top. To balance
the redundancy reduction and SI, we choose the multiple of
the maximal coding unit size in HEVC as the basic unit size
and in our experiments the multiple is 4. The units with a
small percentage of matched points are normally not reliable
and worthy to reconstruct for prediction and here the unit se-
lection threshold we adopted is 7 = 0.2 empirically. Then we
exploit the general RANSAC algorithm [10] to generate the
homograph transform H for the approximation of the geo-
metric relation in each of selected units in Equation 2.

a b ¢
Uy = ue - H, H=|d e f 2)
g h i

where u,. and u, are the matched point coordinates in each
unit from I, and I,. The homograph transform H is used to
approximate the inter-unit relation between the image pair by
capturing the major deformation relation as shown in Fig 2 (c)
and (d). After the geometric correlation parameterization, the
geometric transformation and luminance adjustment in each
unit are used to reconstruct new reference I,,. as shown in the

() (b)

Fig. 2. Dense correspondence based prediction and new ref-
erence reconstruction. (a) and (b) Matched pixels in I, and
corresponding points in /,. (Note that the matched pixels in
(a) and (b) are partially shown every 32 pixels.) (c) and (d)
One of the selected units in I, and its corresponding unit in
I,. (e) Current image I... (f) Reconstructed reference /..

following Equation 3:

Irec(Uc) = - Ir(Uc . H) + B (3)
a=o(l.(U))/o(I(U. - H))
B =pl(Uc)) — - p((Ue - H))

where /. and I, are the current and reference images, and [,
is the reconstructed reference image. U, are coordinates of all
pixels in selected unit in /. and U, - H are their correspond-
ing coordinates in I, u and o are the mean and variance of
the pixel values, o and /3 are the luminance scale and off-
set. Here we only perform the luminance adjustment since
the luminance component is more important in HEVC with
4:2:0 color space sampling. Next the new reference [, is
reconstructed in the selected transformed units and the left
uncovered regions are filled with I, as shown in Fig 2 (f).

At last we utilize the HEVC Inter-prediction coding to
encode I. with the reference I,... Here the SI consists of se-
lected unit locations, homograph matrices, and luminance ad-
justment parameters. The matrices are quantized and rounded
with the appropriate constant quantization table. The loca-
tions of selected units and luminance parameters are also
quantized and round properly. Finally the SI is encoded with
arithmetic coding and kept along with video encoded bitrate.
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Fig. 3. Test image pairs
(Top row: image pairs from “Mail room” and “Wadham College”;
Bottom row: image pairs from “Notre Dame” and “Mount Rushmore”)

5. EXPERIMENTAL RESULTS

For the comparison, we re-implement the SIFT-based multi-
model method in [13]. We utilize the HEVC HM15.0 for both
methods and choose the Quantization Parameter (QP) setting
of 22, 27, 32 and 37. The experiments are conducted in four
image sets: “Mail room” set, “Notre Dame” set, “Wadham
college” set provided in [13] and “Mount Rushmore” set col-
lected from Google Images as shown in Fig 3.

The coding results are shown in Fig 4. The SIFT-based
multi-model method saves 31.57%, 51.76%, 38.63%, and
9.05% over the HEVC inter-prediction coding in the four
image pairs while our approach achieves 43.63%, 55.60%,
34.20%, and 18.73% bitrate saving. We can observe that our
approach achieves better coding performance for the image
pairs in Fig 4 (a) and (b). In Fig 4 (c) the performance is
comparable as the state-of-the-art due to the existence of
obvious multi-view related planar regions and side effect
of the unit division for single reference reconstruction. It’s
obvious that the inter-image coding improvement is content-
dependent. Although in Fig 4 (d) the images collected from
Google Images are not as similar as other three sets, the im-
provement of our approach is comparatively significant and
demonstrates that our local luminance adjustments are more
robust comparing to the feature-based global photometric
transformation when the local variations are dominant and
luminance relation is complex.

Comparing to the state-of-the-art methods, our approach
achieves better performance and robustness to complex lumi-
nance variations when the local variations are dominant.
Generally, the feature-based image pair method has no strong
relation to the inter-image coding prediction. While our dense
correspondence based prediction approach is similar to BME
& BMC in video coding, it has the potential to more exactly
estimate the encoding improvement, and for the entire image
set the better prediction method aligned with image pair com-
pression approach means the better coding structure and thus
better image set encoding performance.
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Fig. 4. Coding performance comparison. (“Intra” and

“Inter” curves are the HEVC Intra-prediction coding and
Inter-prediction coding, and “SIFT-based multi-model” [13].)

6. CONCLUSION

As a response to the new requirement and challenge in big
data and cloud computing, we have proposed a novel dense
correspondence based prediction approach for image set com-
pression which achieves better performance comparing to the
relevant state-of-the-art method when the local variations
are dominant. The dense correspondence is first estimated
to predict the pixel-to-pixel relation via fast-convergent ran-
dom searching, and with the parameterization of the pre-
diction results, we reconstruct a new reference image by
geometric transformations and luminance adjustments for the
subsequent HEVC inter-prediction coding. Because of the
reconstruction in local units our approach is more robust to
the complex local variations. In the image set compression
that follows in our future work, the dense correspondence
based prediction has the potential to better estimate the image
pair similarity for the optimal encoding structure generation
and thus achieves better performance for the entire image set.
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