
FAST IMAGE INTERPOLATION WITH DECISION TREE

Jun-Jie Huang and Wan-Chi Siu

Centre for Signal Processing, Department of Electronic and Information Engineering
The Hong Kong Polytechnic University

ABSTRACT

This paper proposes a fast image interpolation method using
decision tree. This new fast image interpolation with
decision tree (FIDT) method can achieve state-of-the-art
image interpolation performance and requires only 10%
computational time of the soft adaptive interpolation (SAI)
method. During training, the proposed method recursively
divides the training data at a non-leaf node into two child
nodes according to the binary test which can maximize the
information gain of a division. At the end, for each of the
leaf node, a linear regression model is learned according to
the training data at that leaf node. In the image interpolation
phase, input image patches are passed into the learned
decision tree. According to the stored binary test at each
non-leaf node, each input image patch will be classified into
its left or right child node until a leaf node is reached. The
high-resolution image patch of the input image patch can
then be predicted efficiently using the learned linear
regression model at the leaf node.

Index Terms— Image interpolation, decision tree,
classification, regression and training

1. INTRODUCTION

The objective of image interpolation is to generate a high-
resolution (HR) image from a low-resolution (LR) image,
where the LR image is obtained by direct downsampling
(without anti-aliasing pre-filtering) the original HR image.
Image interpolation algorithms help to break the inherent
limitation of the low-resolution imaging and better utilize
the increasing resolution of the displays. They have wide
applications, for example, HDTV, image resizing, image
coding, surveillance systems, medical imaging and face
recognition, etc.

The existing image interpolation methods can be
categorized mainly into two classes: conventional
polynomial based interpolation methods [1-4] and edge-
directed interpolation methods [5-14].

The conventional polynomial based interpolation
methods [1-4] interpolate the unknown pixels using the
known surrounding pixels by non-adaptive [1] [2] or
adaptive [3] [4] polynomial linear filters. For real-time
applications, the conventional polynomial based

interpolation methods (e.g. bicubic interpolation) are often
adopted because their low computational complexity.
However, they usually produce annoying blurry edges and
jagging artifacts.

The edge-directed interpolation methods [5-15]
explicitly or implicitly utilize the edge directional
information to produce sharper edges and fewer artifacts.
The explicit edge-directed methods [5-8] estimate the edge
orientation and position and then interpolate the missing
pixels using the edge information. The explicit methods are
limited by the edge detection accuracy. To overcome this
problem, implicit edge-directed methods [8-15] are
proposed. The new edge-directed interpolation (NEDI)
method [9] proposed to make use of the geometric duality
property. The missing HR pixels are predicted using the
classical Wiener filter by the HR pixel covariance which is
estimated by LR pixel covariance. The directional filtering
and data fusion (DFDF) method [13] fuses two noisy
directional interpolation results by linear minimum mean
square error estimation. The soft adaptive interpolation
(SAI) methods [14] [15], which use the block-based soft-
decision estimation, increase the orders of coefficients
compared with NEDI and add feedback terms in the
objective function, achieve great improvement in PSNR.
The sophisticated edge-directed image interpolation
algorithms can provide satisfactory results, however, often
require huge computations.

In the literature, the decision tree [16-19] has been
widely utilized for real-time applications, such as, object
detection [20], fast keypoint detection [21], fast edge
detection [22], image classification [23], image
segmentation [24] etc. In this paper, we propose to apply
decision tree for fast image interpolation. Different from the
implicit edge-directed image interpolation methods, the
proposed method does not learn a local statistical model
from the input image for interpolation, but classifies the
image patch into one of the classes in which a pre-learned
image interpolation linear regression model is stored. Using
the pre-learned linear regression model, the HR image patch
can be easily predicted by multiplying the linear regression
model with the LR image patch vector. Besides, the image
patch detection and classification process is fast owing to
the simple binary test used in the decision tree.

This paper is organized as follows. In Section 2, we
briefly introduce the decision tree. In Section 3, we describe

1221978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

how to apply decision tree for image interpolation. Section 4
presents the experimental results and Section 5 concludes
the paper.

2. DECISION TREE

Decision tree was firstly proposed by Breiman et al. [16] in
1984, and now is a commonly used data mining algorithm.
The general idea of decision tree is to predict an unknown
input sample according to several known training samples.
A decision tree recursively partitions a region in the training
data space into two child regions according to the
information gain of the partition and assign a classification
or regression model to the region which cannot be further
divided.

Fig.1. A decision tree.

A decision tree T has non-leaf nodes and leaf nodes as
shown in Fig.1. Each non-leaf node classifies the input
sample x into its left or right child node according to the
result of the split function h(x,θ) which uses the stored
binary test θ. The predictions are performed on leaf nodes
using the trained classification or regression model (e.g. C1,
C2, …) associated in each leaf node.

The binary test adopted in this paper is specified by
three parameters θ = {p1, p2, τ}. The first two parameters p1
and p2 represent two positions on the feature vector of the
input sample, and τ is a threshold value. The split function is
defined as below:

⎩
⎨
⎧ +<

=
otherwise. ,1

)()(if ,0
),(

21 τ
θ

pp
h

xx
x (1)

2.1. Decision Tree Training

The decision tree is trained in a recursive manner. For each
non-leaf node j, the objective is to find the best binary test
θj, which can maximize the information gain among K
randomly selected binary tests. For each binary test, all the
three parameters are randomly generated within a range.

,
2550

1,0 21

⎩
⎨
⎧

≤≤
−≤≤

τ
Dpp

 (2)

where D is the dimension of the feature vector.
Let us define the training data at node j as Sj. The binary test
can split the training data at node j into its left child node

L
jS or right child node R

jS .

.\

}0),(|{
L
jj

R
j

j
L
j

SSS

hSxS

=

=∈= θx
 (3)

The information gain is defined to evaluate the
effectiveness of a binary test:

),(
||
||)(),(

},{

n

RLn

n

SH
S
SSHSI ∑

∈

−=θ (4)

where H(S) is the entropy for the training data S to be
defined in (12).

The randomly generated binary tests tend to split the
training data into two unbalanced child nodes (i.e. one child
node occupies the vast majority of the training data).
According to (4), the little drop of the entropy at the large
child node would mask the great rise of the entropy at the
small child node, while large entropy means a higher level
of dissimilarity among the training data. This would affect
the training effectiveness. To solve this problem, we
propose to insert a constraint to select the binary test. Only
the binary test which fulfills (5) will be picked into the K
randomly selected binary tests. The constraint parameter λ is
selected as 0.75 by cross-validation.

|).||,min(||)||,max(| RLRL SSSS ≤× λ (5)
If the highest information gain I(S, θj) is larger than a

threshold IT, the training data at node j will be mapped into
its two child nodes according to θj. Besides, the binary test
θj will be stored associated with node j.

There are three situations to declare a node as the leaf
node: (i) I(S, θj) is smaller than IT; (ii) the number of training
data of a node is less than the minimum number of training
data NT for further split; (iii) the depth of a node reaches the
maximum tree depth Dmax.

For each leaf node, a regression model will be
constructed for prediction.

Fig.2. Training data sampling process.

1222

3. IMAGE INTERPOLATION USING DECISION
TREE

The image interpolation is regarded as a regression process,
i.e. relating the LR image patch to its desired HR image
patch.

According to extremely randomized trees [18], for
regression problem, the number of randomly selected binary
tests K should be:

),1(−= DDK (6)
where D is the dimension of the feature vector.

The decision tree is good at dealing with multiple
features, however, only the intensity feature is adopted, for
the sake of simplicity. For further investigation, more
features can be attached.

Each training data P is a LR-HR image patch pair.
),,(yx=P (7)

where dR∈x is the LR image patch vector sampled from
the bicubic upsampled image, dR∈y is the corresponding
HR image patch vector of x sampled from the original HR
image and d is the patch size.

Considering the training efficiency, only the patches
from the edge areas are sampled, as shown in Fig.2. The
edge areas are the positions with edge magnitude larger than
60 after performing the Canny edge detection.

Assuming there are l training data reached at node j:
}.,...,1|{ liPS ij == (8)

All the LR image patch feature vectors and HR image
patch feature vectors in Sj can be grouped into matrix form

ld RR ×∈X and ld RR ×∈Y . The relationship between X
and Y in node j is model by a regression model Cj which
can minimize the mean squared error between the
reconstructed HR image patch, (CjX), and the ground truth
HR image patch, Y, within the training data on node j.

.||||minarg 2XCYC jj −= (9)
And (9) can be simply solved by the least squares

method with a closed form solution:
.)(1−= TT

j XXYXC (10)
With the obtained regression model between the LR

image patch and the HR image patch, the predicted HR

image patch yR is reconstructed using the regression model
C and the LR image patch x as follows.

.Cxy =R (11)
The entropy H(S) defined in (4) is the mean squared

error between the predicted HR image patch and its
corresponding original HR image patch.

.||||
||

1)(2∑
∈

−=
S

R

S
SH

y

yy (12)

Each leaf node will store the regression model
constructed by the training data reached at this leaf node as
(10).

Fig.3. shows the procedures for image interpolation
using decision tree. The input LR image will be firstly up-
sampled by bicubic interpolation. Each image patch on the
edge area will be collected and vectorized, then passed into
the learned decision tree. According to the binary tests
stored at the non-leaf nodes, the input image patch will be
recursively classified into left or right child node until a leaf
node is reached. Using the regression model at the reached
leaf node, the predicted HR image patch of the input patch
can be obtained by (11). As the input patches of the decision
tree are overlapped with each other and the patches in
smooth area are interpolated by bicubic interpolation, each
pixel will have multiple prediction values (from decision
tree prediction or bicubic interpolation). The final
interpolated image is obtained by averaging all the
predictions.

4. EXPERIMENTAL RESULTS

To train the decision tree, 22 images from training images of
[25] are selected as shown in Fig.4 The patch size was
selected as 5×5, the maximum tree depth Dmax is 12, the
minimum number of training data NT for further split is 200
and the threshold for information gain IT is 0.01. Around
830000 LR-HR patch pairs are used for training. After
training, there are 2958 leaf nodes in the decision tree.

As shown in Fig.5, 8 commonly used images are
selected for testing. The PSNR is adopted to evaluate the
objective comparison between the proposed method and the
competing methods, including NEDI [9], DFDF [13], SAI
[14]. From Table 1, we can find that the PSNR of the

Fig.3. Image interpolation using decision tree.

1223

proposed fast image interpolation with decision tree (FIDT)
method is 0.81 dB, 0.82 dB, 0.68 dB and 0.16 dB higher
than Bicubic, NEDI, DFDF and SAI, respectively.

Since the source code from the author of NEDI and
DFDF are implemented in Matlab and other methods are
implemented in C, in order to compare the computational

time of different methods, we assume that Matlab
implementation is 10 times slower than C implementation;
hence the computational time of NEDI and DFDF is scaled
down by 10 times in Fig.6, even though in some cases
Matlab program can be as faster as C++ program.

From Fig.6, we can find that the proposed FIDF method
can achieve high quality image interpolation while use 10
percent computational time of the SAI. The reason is that
the proposed FIDT method does not learn a statistical model
from a local window in the input image, but classifies the
input image patches into one of the learned image
interpolation model. Besides, the image patch classification
process is very fast, since only several pairs of pixels have
to be compared. Most of the computational time is spent on
the matrix multiplication between the input image patch and
the learned image model. So, the overall complexity is very
low for the proposed fast image interpolation with decision
tree method. The high quality image interpolation results
come from the good classification properties of the decision
tree with the proposed constraint and benefit from the huge
amount of training data.

5. CONCLUSIONS

In this paper, we have presented a fast image interpolation
method with decision tree. The proposed fast image
interpolation with decision tree (FIDT) method can offer
state-of-the-art interpolation results as well as high
computational efficiency. Different from the explicit-edge
directed image interpolation methods, the proposed method
uses off-line learned image interpolation models rather than
on-line learning image interpolation models. The simple
image patch classification process enables fast image
interpolation. While the decision tree with the proposed
binary test constraint guarantees the quality of training
results and the image interpolation results.

For future work, random ferns can be used to replace
the decision tree to explore fast image interpolation method,
since the classification process is even simpler. The decision
tree has a good property to be realized in parallel, so another
direction is to realize image interpolation with decision tree
in GPU or multi-process.

Images Bicubic (C) NEDI [9] (Matlab) DFDF [13] (Matlab) SAI [14] (C) Proposed FIDT (C)
PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

kodim03 34.99 0.003 35.27 12.076 35.25 8.475 35.79 2.584 35.77 0.190
kodim05 27.29 0.003 27.29 13.033 27.40 7.698 28.34 2.631 28.42 0.461
kodim07 34.50 0.004 34.19 12.388 34.58 7.633 35.53 2.648 35.72 0.279
kodim08 23.68 0.003 23.40 13.222 23.74 7.655 23.81 2.642 23.95 0.463
kodim15 33.68 0.004 33.82 12.439 33.77 7.632 34.15 2.614 34.28 0.193
kodim19 28.24 0.004 27.59 12.841 28.38 7.593 27.97 2.609 28.67 0.269
kodim20 32.06 0.004 32.53 12.162 32.49 7.969 32.98 2.349 33.15 0.208
kodim23 36.14 0.004 36.41 12.032 35.98 7.643 37.28 2.585 37.14 0.149
Average 31.32 0.004 31.31 12.524 31.45 7.787 31.98 2.583 32.14 0.277

Table.1. PSNR (dB) and the computational time (s) of the proposed method and other competing methods.

Fig.4. Sample training images.

Fig.5. 8 testing images. From left to right and top to bottom:
kodim03, kodim05, kodim07, kodim08, kodim15, kodim19,
kodim20 and kodim23.

Fig.6. Approximated C computational time (s) vs. PSNR
(dB) of the proposed FIDT method and other methods.

1224

6. REFERENCES

[1] R. G. Keys, “Cubic convolution interpolation for digital

image processing,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 29, no. 6, pp. 1153–1160, Dec. 1981.

[2] H. S. Hou and H. C. Andrews, “Cubic splines for image
interpolation and digital filtering,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 26, no. 6, pp. 508–517, Dec.
1978.

[3] T. Blu, P. The´venaz and M. Unser, “Linear interpolation
revitalized,” IEEE Trans. Image Process., vol. 13, no.6,, pp.
710–719, 2004.

[4] T. Lehmann, C. Go¨nner, K. Spitzer, “Addendum: B-spline
interpolation in medical image processing,” IEEE Trans. Med.
Imaging, vol. 20, no. 7, pp. 660–665, 2001.

[5] K. Jensen and D. Anastassiou, “Subpixel edge localization
and the interpolation of still images,” IEEE Trans. Image
Process., vol. 4, no. 3, pp. 285–295, Mar. 1995.

[6] H. Shi and R. Ward, “Canny edge based image expansion,” in
Proc. IEEE Int. Symp. Circuits Syst., vol. 1, pp. 785–788,
May 2002.

[7] Q. Wang and R. K. Ward, “A new orientation-adaptive
interpolation method,” IEEE Trans. Image Process., vol. 16,
no. 4, pp. 889–900, Apr. 2007.

[8] D. D. Muresan, “Fast edge directed polynomial interpolation,”
Proceedings, pp. 990-993, 2005 IEEE International
Conference on Image Processing (ICIP’05), vol. 2, 11-14
Sep. 2005, Genova, Italy.

[9] X. Li and M. T. Orchard, “New edge-directed interpolation,”
IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521–1527,
Oct. 2001.

[10] W.S. Tam, C.W. Kok and W.C. Siu, “A Modified Edge
Directed Interpolation for Images,” Journal of Electronic
Imaging, vol.19 (1), 013011, pp.13011_1-20, Jan-March
2010.

[11] C.S. Wong and W.C. Siu, “Further Improved Edge-directed
Interpolation and Fast EDI for SDTV to HDTV Conversion,”
Proceedings,18th European Signal Processing Conference
(EUSIPCO’2010), pp.309-313, 23-27 August, 2010, Aalborg
Denmark.

[12] C.S. Wong and W.C. Siu, “Adaptive Directional Window
Selection for Edge-Directed Interpolation,” Proceedings, pp.
1-6, 2010 International Conference on Computer
Communications and Networks (ICCCN’10), 2-5 August,
2010, Zurich, Switzerland.

[13] L. Zhang and X. Wu, “An edge guided image interpolation
algorithm via directional filtering and data fusion,” IEEE
Trans. Image Process., vol. 15, no. 8, pp. 2226–2238, Aug.
2006.

[14] X. Zhang and X. Wu, “Image interpolation by adaptive 2D
autoregressive modeling and soft-decision estimation,” IEEE
Trans. Image Process., vol. 17, no. 6, pp. 887–896, Jun. 2008.

[15] K.W. Hung and W.C. Siu, “Robust Soft-decision
Interpolation using weighted Least Squares,” vol.21, no.3,
pp.1061-1069, March 2012, IEEE Transactions on Image
Processing, USA.

[16] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,
“Classification and Regression Trees,” CRC press, 1984.

[17] L. Breiman, “Random forests,” Machine Learning, 45.1
(2001): 5-32.

[18] P. Geurts, D. Ernst, and L.Wehenkel, “Extremely randomized
trees,” Machine Learning, 63.1 (2006):3–42.

[19] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision
Forests: A Unified Framework,” Foundations and Trends in
Computer Graphics and Vision, vol. 7, pp. 81-227, 2012.

[20] J. Gall, A. Yao, N. Razavi, L. Gool, and V. Lempitsky,
“Hough forests for object detection, tracking, andaction
recognition,” IEEE Trans. Pattern Anal. Mach. Intel., vol. 33,
no. 11, pp. 2188–2202, Nov. 2011.

[21] Lepetit, Vincent, and Pascal Fua, “Keypoint recognition using
randomized trees,” IEEE Trans. Pattern Anal. Mach. Intel.,
vol. 28, no. 9, pp. 1465-1479, Sept. 2006.

[22] Piotr Dollár and C. Lawrence Zitnick, “Structured Forests for
Fast Edge Detection,” Proceedings, pp. 1841-1848, 2013
IEEE International Conference on Computer Vision
(ICCV’13), 1-8 Dec. 2013, Sydney, Australia.

[23] A. Bosch, A. Zisserman, and X. Munoz, “Image classification
using random forests and ferns,” Proceedigns, pp. 1-8, 2007
IEEE International Conference on Computer Vision
(ICCV’07), 14-21 Oct. 2007, Rio de Janeiro, Brazil.

[24] J. Shotton, M. Johnson, R. Cipolla, “Semantic Texton Forests
for Image Categorization and Segmentation,” Proceedings, p.
1-8, 2008 IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR’08), 23-28 June, 2008,
Anchorage, USA.

[25] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-
resolution via sparse representation,” IEEE Trans. Image
Process., vol. 19, no. 11, pp. 2861–2873, Nov. 2010.

1225

