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ABSTRACT 

 
This paper proposes a fast image interpolation method using 
decision tree. This new fast image interpolation with 
decision tree (FIDT) method can achieve state-of-the-art 
image interpolation performance and requires only 10% 
computational time of the soft adaptive interpolation (SAI) 
method. During training, the proposed method recursively 
divides the training data at a non-leaf node into two child 
nodes according to the binary test which can maximize the 
information gain of a division. At the end, for each of the 
leaf node, a linear regression model is learned according to 
the training data at that leaf node. In the image interpolation 
phase, input image patches are passed into the learned 
decision tree. According to the stored binary test at each 
non-leaf node, each input image patch will be classified into 
its left or right child node until a leaf node is reached. The 
high-resolution image patch of the input image patch can 
then be predicted efficiently using the learned linear 
regression model at the leaf node. 
 

Index Terms— Image interpolation, decision tree, 
classification, regression and training 
 

1. INTRODUCTION 
 
The objective of image interpolation is to generate a high-
resolution (HR) image from a low-resolution (LR) image, 
where the LR image is obtained by direct downsampling 
(without anti-aliasing pre-filtering) the original HR image. 
Image interpolation algorithms help to break the inherent 
limitation of the low-resolution imaging and better utilize 
the increasing resolution of the displays. They have wide 
applications, for example, HDTV, image resizing, image 
coding, surveillance systems, medical imaging and face 
recognition, etc. 

The existing image interpolation methods can be 
categorized mainly into two classes: conventional 
polynomial based interpolation methods [1-4] and edge-
directed interpolation methods [5-14].  

The conventional polynomial based interpolation 
methods [1-4] interpolate the unknown pixels using the 
known surrounding pixels by non-adaptive [1] [2] or 
adaptive [3] [4] polynomial linear filters. For real-time 
applications, the conventional polynomial based 

interpolation methods (e.g.  bicubic interpolation) are often 
adopted because their low computational complexity. 
However, they usually produce annoying blurry edges and 
jagging artifacts. 

The edge-directed interpolation methods [5-15] 
explicitly or implicitly utilize the edge directional 
information to produce sharper edges and fewer artifacts. 
The explicit edge-directed methods [5-8] estimate the edge 
orientation and position and then interpolate the missing 
pixels using the edge information. The explicit methods are 
limited by the edge detection accuracy. To overcome this 
problem, implicit edge-directed methods [8-15] are 
proposed. The new edge-directed interpolation (NEDI) 
method [9] proposed to make use of the geometric duality 
property. The missing HR pixels are predicted using the 
classical Wiener filter by the HR pixel covariance which is 
estimated by LR pixel covariance. The directional filtering 
and data fusion (DFDF) method [13] fuses two noisy 
directional interpolation results by linear minimum mean 
square error estimation. The soft adaptive interpolation 
(SAI) methods [14] [15], which use the block-based soft-
decision estimation, increase the orders of coefficients 
compared with NEDI and add feedback terms in the 
objective function, achieve great improvement in PSNR. 
The sophisticated edge-directed image interpolation 
algorithms can provide satisfactory results, however, often 
require huge computations.  

In the literature, the decision tree [16-19] has been 
widely utilized for real-time applications, such as, object 
detection [20], fast keypoint detection [21], fast edge 
detection [22], image classification [23], image 
segmentation [24] etc. In this paper, we propose to apply 
decision tree for fast image interpolation. Different from the 
implicit edge-directed image interpolation methods, the 
proposed method does not learn a local statistical model 
from the input image for interpolation, but classifies the 
image patch into one of the classes in which a pre-learned 
image interpolation linear regression model is stored. Using 
the pre-learned linear regression model, the HR image patch 
can be easily predicted by multiplying the linear regression 
model with the LR image patch vector. Besides, the image 
patch detection and classification process is fast owing to 
the simple binary test used in the decision tree. 

This paper is organized as follows. In Section 2, we 
briefly introduce the decision tree. In Section 3, we describe 
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how to apply decision tree for image interpolation. Section 4 
presents the experimental results and Section 5 concludes 
the paper. 

 
2. DECISION TREE 

 
Decision tree was firstly proposed by Breiman et al. [16] in 
1984, and now is a commonly used data mining algorithm. 
The general idea of decision tree is to predict an unknown 
input sample according to several known training samples. 
A decision tree recursively partitions a region in the training 
data space into two child regions according to the 
information gain of the partition and assign a classification 
or regression model to the region which cannot be further 
divided. 
 

 
Fig.1. A decision tree. 
 

A decision tree T has non-leaf nodes and leaf nodes as 
shown in Fig.1. Each non-leaf node classifies the input 
sample x into its left or right child node according to the 
result of the split function h(x,θ) which uses the stored 
binary test θ. The predictions are performed on leaf nodes 
using the trained classification or regression model (e.g. C1, 
C2, …) associated in each leaf node. 

The binary test adopted in this paper is specified by 
three parameters θ = {p1, p2, τ}. The first two parameters p1 
and p2 represent two positions on the feature vector of the 
input sample, and τ is a threshold value. The split function is 
defined as below: 
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2.1. Decision Tree Training 
 
The decision tree is trained in a recursive manner. For each 
non-leaf node j, the objective is to find the best binary test 
θj, which can maximize the information gain among K 
randomly selected binary tests. For each binary test, all the 
three parameters are randomly generated within a range. 
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where D is the dimension of the feature vector.  
Let us define the training data at node j as Sj. The binary test 
can split the training data at node j into its left child node 
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The information gain is defined to evaluate the 
effectiveness of a binary test: 
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where H(S) is the entropy for the training data S to be 
defined in (12). 

The randomly generated binary tests tend to split the 
training data into two unbalanced child nodes (i.e. one child 
node occupies the vast majority of the training data). 
According to (4), the little drop of the entropy at the large 
child node would mask the great rise of the entropy at the 
small child node, while large entropy means a higher level 
of dissimilarity among the training data. This would affect 
the training effectiveness. To solve this problem, we 
propose to insert a constraint to select the binary test. Only 
the binary test which fulfills (5) will be picked into the K 
randomly selected binary tests. The constraint parameter λ is 
selected as 0.75 by cross-validation.  

|).||,min(||)||,max(| RLRL SSSS ≤× λ  (5) 
If the highest information gain I(S, θj) is larger than a 

threshold IT, the training data at node j will be mapped into 
its two child nodes according to θj. Besides, the binary test 
θj will be stored associated with node j.  

There are three situations to declare a node as the leaf 
node: (i) I(S, θj) is smaller than IT; (ii) the number of training 
data of a node is less than the minimum number of training 
data NT for further split; (iii) the depth of a node reaches the 
maximum tree depth Dmax. 

For each leaf node, a regression model will be 
constructed for prediction. 

 

  
Fig.2. Training data sampling process. 
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3. IMAGE INTERPOLATION USING DECISION 
TREE 

 
The image interpolation is regarded as a regression process, 
i.e. relating the LR image patch to its desired HR image 
patch. 

According to extremely randomized trees [18], for 
regression problem, the number of randomly selected binary 
tests K should be:  

),1( −= DDK     (6) 
where D is the dimension of the feature vector. 

The decision tree is good at dealing with multiple 
features, however, only the intensity feature is adopted, for 
the sake of simplicity. For further investigation, more 
features can be attached.  

Each training data P is a LR-HR image patch pair. 
),,( yx=P     (7) 

where dR∈x  is the LR image patch vector sampled from 
the bicubic upsampled image, dR∈y  is the corresponding 
HR image patch vector of x sampled from the original HR 
image and d  is the patch size. 

Considering the training efficiency, only the patches 
from the edge areas are sampled, as shown in Fig.2. The 
edge areas are the positions with edge magnitude larger than 
60 after performing the Canny edge detection. 

Assuming there are l training data reached at node j: 
}.,...,1|{ liPS ij ==    (8) 

All the LR image patch feature vectors and HR image 
patch feature vectors in Sj can be grouped into matrix form 

ld RR ×∈X  and ld RR ×∈Y . The relationship between X 
and Y in node j is model by a regression model Cj which 
can minimize the mean squared error between the 
reconstructed HR image patch, (CjX), and the ground truth 
HR image patch, Y, within the training data on node j. 

.||||minarg 2XCYC jj −=   (9) 
And (9) can be simply solved by the least squares 

method with a closed form solution: 
.)( 1−= TT

j XXYXC    (10) 
With the obtained regression model between the LR 

image patch and the HR image patch, the predicted HR 

image patch yR is reconstructed using the regression model 
C and the LR image patch x as follows. 

.Cxy =R     (11) 
The entropy H(S) defined in (4) is the mean squared 

error between the predicted HR image patch and its 
corresponding original HR image patch. 
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Each leaf node will store the regression model 
constructed by the training data reached at this leaf node as 
(10). 

Fig.3. shows the procedures for image interpolation 
using decision tree. The input LR image will be firstly up-
sampled by bicubic interpolation. Each image patch on the 
edge area will be collected and vectorized, then passed into 
the learned decision tree. According to the binary tests 
stored at the non-leaf nodes, the input image patch will be 
recursively classified into left or right child node until a leaf 
node is reached. Using the regression model at the reached 
leaf node, the predicted HR image patch of the input patch 
can be obtained by (11). As the input patches of the decision 
tree are overlapped with each other and the patches in 
smooth area are interpolated by bicubic interpolation, each 
pixel will have multiple prediction values (from decision 
tree prediction or bicubic interpolation). The final 
interpolated image is obtained by averaging all the 
predictions. 
 

4. EXPERIMENTAL RESULTS 
 
To train the decision tree, 22 images from training images of 
[25] are selected as shown in Fig.4 The patch size was 
selected as 5×5, the maximum tree depth Dmax is 12, the 
minimum number of training data NT for further split is 200 
and the threshold for information gain IT is 0.01. Around 
830000 LR-HR patch pairs are used for training. After 
training, there are 2958 leaf nodes in the decision tree. 

As shown in Fig.5, 8 commonly used images are 
selected for testing. The PSNR is adopted to evaluate the 
objective comparison between the proposed method and the 
competing methods, including NEDI [9], DFDF [13], SAI 
[14]. From Table 1, we can find that the PSNR of the 

 
 

Fig.3. Image interpolation using decision tree. 

1223



proposed fast image interpolation with decision tree (FIDT) 
method is 0.81 dB, 0.82 dB, 0.68 dB and 0.16 dB higher 
than Bicubic, NEDI, DFDF and SAI, respectively. 

Since the source code from the author of NEDI and 
DFDF are implemented in Matlab and other methods are 
implemented in C, in order to compare the computational 

time of different methods, we assume that Matlab 
implementation is 10 times slower than C implementation; 
hence the computational time of NEDI and DFDF is scaled 
down by 10 times in Fig.6, even though in some cases 
Matlab program can be as faster as C++ program.   

From Fig.6, we can find that the proposed FIDF method 
can achieve high quality image interpolation while use 10 
percent computational time of the SAI. The reason is that 
the proposed FIDT method does not learn a statistical model 
from a local window in the input image, but classifies the 
input image patches into one of the learned image 
interpolation model. Besides, the image patch classification 
process is very fast, since only several pairs of pixels have 
to be compared. Most of the computational time is spent on 
the matrix multiplication between the input image patch and 
the learned image model. So, the overall complexity is very 
low for the proposed fast image interpolation with decision 
tree method. The high quality image interpolation results 
come from the good classification properties of the decision 
tree with the proposed constraint and benefit from the huge 
amount of training data. 
 

5. CONCLUSIONS 
 
In this paper, we have presented a fast image interpolation 
method with decision tree. The proposed fast image 
interpolation with decision tree (FIDT) method can offer 
state-of-the-art interpolation results as well as high 
computational efficiency. Different from the explicit-edge 
directed image interpolation methods, the proposed method 
uses off-line learned image interpolation models rather than 
on-line learning image interpolation models. The simple 
image patch classification process enables fast image 
interpolation. While the decision tree with the proposed 
binary test constraint guarantees the quality of training 
results and the image interpolation results. 

For future work, random ferns can be used to replace 
the decision tree to explore fast image interpolation method, 
since the classification process is even simpler. The decision 
tree has a good property to be realized in parallel, so another 
direction is to realize image interpolation with decision tree 
in GPU or multi-process. 

Images Bicubic (C) NEDI [9] (Matlab) DFDF [13] (Matlab) SAI [14] (C) Proposed FIDT (C) 
PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time 

kodim03 34.99 0.003 35.27 12.076 35.25 8.475 35.79 2.584 35.77 0.190 
kodim05 27.29 0.003 27.29 13.033 27.40 7.698 28.34 2.631 28.42 0.461 
kodim07 34.50 0.004 34.19 12.388 34.58 7.633 35.53 2.648 35.72 0.279 
kodim08 23.68 0.003 23.40 13.222 23.74 7.655 23.81 2.642 23.95 0.463 
kodim15 33.68 0.004 33.82 12.439 33.77 7.632 34.15 2.614 34.28 0.193 
kodim19 28.24 0.004 27.59 12.841 28.38 7.593 27.97 2.609 28.67 0.269 
kodim20 32.06 0.004 32.53 12.162 32.49 7.969 32.98 2.349 33.15 0.208 
kodim23 36.14 0.004 36.41 12.032 35.98 7.643 37.28 2.585 37.14 0.149 
Average 31.32 0.004 31.31 12.524 31.45 7.787 31.98 2.583 32.14 0.277 

 

Table.1. PSNR (dB) and the computational time (s) of the proposed method and other competing methods. 

 
Fig.4. Sample training images. 

 
Fig.5. 8 testing images. From left to right and top to bottom:
kodim03, kodim05, kodim07, kodim08, kodim15, kodim19,
kodim20 and kodim23. 

 
Fig.6. Approximated C computational time (s) vs. PSNR
(dB) of the proposed FIDT method and other methods. 
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