
FACE HALLUCINATION VIA CAUCHY REGULARIZED SPARSE REPRESENTATION

Shenming Qu1,2,3, Ruimin Hu1, Shihong Chen1, Zhongyuan Wang1, Junjun Jiang1, and Cheng Yang1

1 National Engineering Research Center for Multimedia Software,
Computer School of Wuhan Univ., China

2 Research Institute of Wuhan University in Shenzhen, China
3 School of Software, Henan Univ., China

ABSTRACT

In dictionary-learning-based face hallucination, the testing
image is represented as a linear combination of the training
samples, and how to obtain the optimal coefficients is the pri-
mary issue. Sparse representation (SR) has ever been widely
used in face hallucination, however, due to the fact that SR
overemphasizes the sparsity, the obtained linear combination
coefficients turn out far aggressively sparse, then leading to
unsatisfactory hallucinated results. In this paper, we present a
moderately sparse prior model for face hallucination problem
with the L1 norm penalty in classic SR replaced by a Cauchy
penalty term. An iterative optimization is further presented
to solve the minimization of Cauchy regularized objective
function. The experimental results on public face database
demonstrate that our method is much more effective than
state-of-the-art methods.

Index Terms— Super-resolution, face hallucination, s-
parse representation, Cauchy regularization

1. INTRODUCTION

Face hallucination, or face super-resolution, has recently be-
come a hot topic in video applications, such as video surveil-
lance, due to the increasing number of practical applications
of the algorithms proposed [1–10]. It is universally acknowl-
edged that face hallucination is cast as an inverse problem,
it recovers the original high-resolution (HR) image from the
low-resolution (LR) input, and this can be represented by the
observation model as follows:

y = Hx, (1)

where y is the observed LR image (column-stacked), x is
the unknown HR image (column-stacked) to be estimated,
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y ∈ RN , x ∈ RM and N < M . The matrix H ∈ RN×M

represents the imaging system, consisting of several process-
es, such as warping, blurring, down-sampling and more. Giv-
en one LR observation y, face hallucination is to solve the
above-mentioned inverse problem to obtain an approximation
x̂ to the unknown HR image x. Since the N × M matrix H
has far fewer rows than columns, the inverse problem is un-
derdetermined, infinitely many HR images satisfy the above
reconstruction constraint. Thus, to recover a visually pleasing
HR image, various regularization approaches have been pro-
posed to employ some image prior to stabilize the inversion
of this ill-posed problem [11–14].

Recently, as a powerful tool for statistical signal model-
ing, SR has been used as a way of forming regularization in
inverse problems. Candes et al. [15] used an iterative pro-
cedure to get more sparsity solution for sparse signal recov-
ery. Lately, Yang et al. [16] are the first to introduce L1-
norm SR to face hallucination, who enforced corresponding
LR and HR patches to share the same SR to enhance the de-
tailed facial information. Jung et al. [8] advanced a position-
patch face hallucination method to the sparsity constraint least
square problem, and showed state-of-the-art performance in
face hallucination. Very recently, Dong et al. [17] proposed a
method to explore the image nonlocal self-similarity, they u-
tilized non-locally centralized sparse representation (NCSR)
to obtain good estimates of the sparse coding coefficients.

However, due to SR based methods are in favor of spar-
sity, the obtained linear combination coefficients turn out far
aggressively sparse, those methods may select very distinct
basis images to reconstruct the input image, which will re-
sult in unsatisfactory hallucinated result. In fact, SR based
method is to take a sparse constrained optimization to replace
the least square estimation, and to obtain more suitable solu-
tion. Whereas, Laplacian prior assumed for L1-norm may not
quite agree with the actual distribution.

In this paper, we manage to seek a more fitted prior model
for hallucinating face images, we propose a so-called Cauchy
Regularized Sparse Representation (CSR) model for face
hallucination to improve the effectiveness of SR. By placing
a Cauchy prior on solution, we can derive a moderately s-
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parse regularization method, and our method can surpasses
L1-norm SR based methods.

In contrast to Ref. [2, 4–8], the main contribution of this
paper is as follows:
(1) We are the first to introduce Cauchy distribution to model
coefficient prior for face hallucination, and achieve satisfac-
tory hallucinated results.
(2) We use an iterative procedure to gradually approaching
the optimal linear combination coefficients.

The rest of this paper is organized as follows. Section 2
presents the proposed CSR model. Section 3 conducts the ex-
periments on FEI face database [18], and Section 4 concludes
the paper.

2. PROPOSED METHOD

For face hallucination, the traditional sparse coding model is
equivalent to the following optimization problem:

J(α) = ||y −Dα||22 + λ
∑

i
|αi|, (2)

where y = [y1; y2; ...; yN ] ∈ RN is the input LR face image
to be coded, D = [d1; d2; ...; dM ] ∈ RN×M is the training
dictionary with column vector dj being the jth basis images,
and the solution denoted by M-dimensional vector α consists
of a set of linear combination coefficients. Each entry in α is
associated with an individual base in the training dictionary.

2.1. Cauchy Regularized Sparse Representation (CSR)

To estimate those linear combination coefficients, the clas-
sic L1-norm SR assumes that coefficient vector α obeys i.i.d.
zero-mean multivariate Laplacian distribution, namely,

PL(α) =
1

(2µ)
M

exp(−||α||1
µ

), (3)

where scale parameter µ = σα√
2

indicates the diversity and
σα is standard variance of coefficients.

Fig. 1. Some distributions of coefficients.

In contrast to the sharp peak at zero in Laplacian prior,
as show in Fig. 1, we can find that Cauchy prior is relatively
conservative in the sense of sparseness. In other words, its
coefficients is less sparse, a signal is sparse if most entries of
the coefficient vector are zero or close to zero. To enforce the
prediction accuracy, we employ Cauchy distribution to repre-
sent the latent prior in coefficient space, a Cauchy distribution
of the variables αi can be formulated as follows [19] :

p(αi|σα) ∝
σ2
α

σ2
α + α2

i

, (4)

the multidimensional distribution is given by p(α|σα) =
Πip(αi|σα), and we have used this distribution as a prior for
the vector α. Combining the Cauchy prior, our Cauchy regu-
larized sparse representation model is formulated as follows:

J(α) = ||y −Dα||22 + λ
∑

i
ln(1 +

α2
i

σ2
α

), (5)

where
∑

i ln(1 +
α2

i

σ2
α
) is the regularizer imposed by the

Cauchy distribution and is a measure of the sparseness of
the vector of powers Pk = α2

i , i = 0, ...,M−1. The constant
σα controls the amount of sparseness.

Taking derivatives of (5) and equating to zero yields

α = (DTD + λQ−1)−1DT y, (6)

where λ is a regularization parameter and Q is a M × M
diagonal matrix with elements

Qii = 1 +
α2
i

σ2
α

, i = 0, ...,M − 1, (7)

The elements of the diagonal matrix Q are nonlinearly
related to the weight coefficients αi. That is Q depend on α,
so the equation (6) has to be solved by means of an iterative
procedure. The algorithm starts with the coefficient vector
α(0). The initial solution is also used to generate the matrix
Q(0). In each iteration, we compute

Qiter
ii = 1 +

(αiter
i )

2

σ2
α

, (8)

which we subsequently use to update the coding vector α as

αiter = (DTD + λ(Qiter)−1)−1DT y, (9)

where iter denotes iteration number, then, we use αiter to
tune the value of σα.

In general, a few iterations (≤ 10) are needed to minimize
the cost function J(α).

2.2. Hallucinating face images

Face hallucination refers to the technique of estimating a HR
face image from the observed LR face image. Let y be input
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LR face image, Y the LR training dictionary whose column
vector consists of LR face image Ym, m = 1, ...M , where M
is the number of training images. In our method, the recon-
struction weights of the each input image patch y(i,j) located
at position (i, j) in the LR face image are computed by the
following optimization problem:

α(i,j)∗=argmin
α(i,j)

||y(i,j) − Y (i,j)α(i,j)||22

+λ
∑

m
ln(1 +

(α
(i,j)
m )

2

σ2
α(i,j)

),

(10)

where α(i,j) represents the linear reconstruction coefficient
vector, Y (i,j) are the same position patches in LR training im-
age dictionary. After obtaining the reconstruction coefficients
by training LR face images, based on the assumption that LR
and HR patch share similar topological manifold structure [2],
the coefficients are mapped to HR directly to synthesize the
HR face patch x(i,j) through the corresponding HR training
dictionary X(i,j) by

x(i,j) = X(i,j)α(i,j)∗. (11)

Consequently, the target HR image x is reconstructed by
combining these hallucinated HR patches.

3. EXPERIMENTS AND RESULTS

In this section, we perform experiments on benchmark face
databases to demonstrate the performance of our method.
Subjective hallucination results and the objective metrics,
i.e., PSNR and SSIM indexes, are demonstrated.

3.1. Database Description

Fig. 2. Some training faces in FEI Face Database.

The experiments are conducted on FEI face database [18].
FEI face database composed of only frontal and pre-aligned
face images (some samples are shown in Fig. 2). The subset
contains 400 images from 200 subjects (100 men and 100

Table 1. PSNR and SSIM comparison of different methods.

methods PSNR(dB) SSIM

NE 31.75 0.894
LSR 31.90 0.903
SR 32.11 0.905
NCSR 31.30 0.906
Our method 32.51 0.910

women), those subjects are mainly from 19 and 40 years old
with distinct appearances, hairstyles and adornments, and
each subject has two frontal images (one with a neutral or
non-smiling expression and the other with a smiling facial
expression). All the images are cropped to 120× 100 pixels,
and we randomly choose 360 images (180 subjects) as the
training set, leaving the rest 40 images (20 subjects) for test-
ing. Therefore, all the test images were absent completely in
the training set. The LR images are formed by smoothing (an
averaging filter of size 4× 4) and down-sampling (by a factor
of 4) from corresponding HR images. The HR patch size
was 12× 12 and the overlap between neighbor patches was 4
pixels, while the corresponding LR patch size was 3× 3 with
an overlap of 1 pixel.

3.2. Results Comparison

Subjective hallucinated results by different methods such as
Chang’s NE [2], Ma’s LSR [6], Jung’s SR [8] and Dong’s
NCSR [17] as well as our method are demonstrated. The ob-
jective metrics, i.e., PSNR and SSIM index, are also com-
pared. For the sake of fair comparison, the control parameters
in all methods are tuned to their best results.

Table 1 tabulates the average PSNR (dB) and SSIM [20]
comparison of different methods on the 40 testing face images
of FEI face database respectively. As shown in Table 1, both
PSNR and SSIM values of our method are much higher than
those of other methods. Besides the objective comparison, we
are more concerned about the subjective visual quality differ-
ences. As shown in Fig. 3, the regularized methods, including
SR and our method, can generate more competitive result-
s with more facial details than the other two non-regularized
methods, i.e., LSR and NE. By a further examining, the hal-
lucinated images of our method are cleaner and more similar
to the original HR faces (see the noses and eyes). Compared
with that, SR method show their inferiority (smooth the edges
and textures), this confirms that a properly chosen regulariza-
tion can indeed direct the solution toward a better quality out-
come. NCSR fails to recover visual details of facial features
(see the cheeks and mouths) because it primarily exploits the
image nonlocal self-similarity, however, for human face im-
ages, the self-similarity assumption does not hold well.
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Fig. 3. Subjective results by different methods: (a) NE [2];
(b) LSR [6]; (c) SR [8]; (d) NCSR [17]; (e) our method; (f)
original HR faces (ground truth).

4. CONCLUSION

In this paper, we have proposed a moderately sparse prior
model to boost the performance of SR based face halluci-
nation. One important advantage of our method lies in its
excellent ability to characterize the sparsity of face images
with Cauchy regularization term. The plausibility of Cauchy
model has been verified by an experiment on benchmark face
database, the experimental results clearly demonstrated the
superiority in terms of PSNR, SSIM and subjective quality.
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