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ABSTRACT

The fast development of 3-D imaging techniques has in-
creased demands for high-resolution depth images. Conven-
tional depth super-resolution methods reconstruct the high-
resolution image by accessing high frequency information,
either internally from a high-resolution intensity image or ex-
ternally from a high-resolution image database. In this paper,
a new depth super-resolution method based on joint regular-
ization is proposed, which exploits both internal and external
high frequency information. Specifically, a joint regulariza-
tion problem with different constraints is formulated, which
allows us to solve for the high-resolution image and a sparse
code simultaneously. These constraints are constructed by
utilizing information from both internal and external high-
frequency sources. Experimental evaluation suggests that
the proposed method provides improved results over existing
approaches, in terms of both visual appearance and objective
image quality.

Index Terms— depth super-resolution, sparse represen-
tation, non-local constraint, local constraint, joint regulariza-
tion

1. INTRODUCTION

Image super-resolution techniques have been widely used to
enhance the resolution of intensity images. Currently, there
exists a great demand for high-resolution (HR) depth images
since they are extremely useful for constructing high quality
3D scenes. In practice, capturing high-resolution depth im-
ages directly using a camera is either too expensive or time
consuming. Therefore, to reduce cost, high-resolution depth
images are constructed from a collection of low-resolution
(LR) depth versions using super-resolution (SR) methods.
Conventional depth image SR methods can be divided into
three categories: single-frame, multi-frame and learning-
based.

The single-frame SR approach utilizes a registered HR in-
tensity image to help reconstruct the HR depth image. Diebel
et al. applied Markov Random Fields to estimate the miss-
ing pixels in the depth image from the registered HR inten-
sity image [1]. Kopf et al. modified the classic bilateral filter

[2] into a joint bilateral filter which captures the detail infor-
mation from the HR intensity image for up-sampling the LR
depth image [3]. In [4], a more generalized guided filter was
proposed. A linear relationship between the input image and
the registered image is established; the coefficients of this re-
lationship are estimated for reconstructing the target image.
The guided filter can be used to perform a series of image
processing tasks, including image matting, dehazing, denois-
ing and super-resolution.

The multi-frame depth SR approach requires different LR
depth images of the same scene taken from slightly displaced
vantage points. Ronsenbush et al. proposed an SR method
that aligns LR depth images on an HR grid and then interpo-
lates the missing pixels [5]. Taking advantage of the robust
performance of SR using L1-norm regularization [6], Schuon
et al. extended the L1-norm regularization to depth image SR
[7]. In [8], Schuon et al. proposed a new depth SR method
called LidarBoost, which combines the data fidelity term and
a sum-of-gradient-norm regularization term to form a new
regularization problem. In [9], Hu et al. proposed a new SR
method that utilizes the stereo view of the target depth image
to construct a regularization problem.

The learning-based SR approach utilizes high-frequency
information from an HR image database to reconstruct the
target depth image. This approach is derived from intensity
SR methods proposed in [10]. To the best of our knowledge,
only a few methods explore the effectiveness of adopting ex-
ternal database to reconstruct HR depth images. Li et al.
proposed a joint depth SR (J-DSR) method, where different
HR patches are reconstructed using a registered HR intensity
image and a single dictionary [11]. Zheng et al. proposed
a multi-dictionary based depth SR method, where each HR
patch is reconstructed from its own dictionary [12].

Both single-frame and learning-based SR approaches uti-
lize additional high-frequency information to reconstruct HR
images. The difference is that single-frame SR approach
accesses the high-frequency information from an HR inten-
sity image, which can be regarded as an internal information
source. A learning-based SR approach, on the other hand,
relies on the high-frequency information from an external
HR depth image database to reconstruct the HR image. In
this paper, we propose a new depth SR method by formu-
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lating a joint regularization problem to solve for the HR
image and the sparse representation simultaneously; con-
straints in this regularization problem are built from both
internal and external information sources. Therefore, the
proposed method is hereafter referred to as super-resolution
using internal and external information (SRIE). Compared to
conventional single-frame and learning-based methods, the
proposed method achieves higher reconstruction accuracy.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the joint regularization SR problem, fol-
lowed by the formulation of the local and non-local con-
straints. Section 3 presents the experimental evaluation and
comparisons of SRIE with other SR methods. Section 4
provides concluding remarks.

2. DEPTH SUPER-RESOLUTION BASED ON JOINT
REGULARIZATION

This section describes the proposed joint regularization based
depth SR method. In Subsection 2.1, the SR problem is for-
mulated as a joint optimization over the target HR image and a
sparse code. Then, in Subsection 2.2, the local and non-local
regularization constraints are constructed from the registered
HR intensity image and the depth LR image, respectively.

2.1. Joint sparse coding and image reconstruction

Given an LR depth image, we aim to reconstruct the HR depth
image with an external HR depth database. Let Y ∈ RN×1

and X ∈ RM×1 be lexicographically ordered vectors repre-
senting the input LR and the target HR depth images. The
degradation model for the super-resolution problem can be
formulated as

Y = CX + V, (1)

where C is a degradation matrix of size N × M , contain-
ing blurring and downsampling operations, and V denotes
zero-mean additive white Gaussian noise. Similarly to other
learning-based SR methods [13, 14], we adopt a patch-based
approach, where Y and X are partitioned into overlapping
patch sets {yi ∈ Rn×1; i = 1, . . . , q} and {xi ∈ Rm×1; i =
1, . . . , q}, respectively. Assuming xi can be sparsely repre-
sented over an over-complete dictionary, we can express the
HR patches as:

xi = Dhαααi + vhi , (2)

where Dh is a high-resolution dictionary of HR patches ex-
tracted from the image database, αααi is a sparse vector, and
vhi represents additive noise. Combining all q HR vectors
xi by stacking them together yields a composite HR vector
x ∈ Rqm×1, which can be represented as

x = Dhααα+ vh (3)

where ααα is a single sparse vector comprising the q sparse
codes αααi, vh is a noise vector, and Dh is a block diagonal

dictionary, containing the HR dictionaries on the main diag-
onal. Note that although the composite vector x and the HR
vector X are of different sizes, due to the overlap between
the patches, they possess the same image content. Define a
linear operator Γ ∈ RM×qm that stitches all the HR patches
together and averages the overlapping areas. The vectors x
and X are related by

X = Γx = ΓDhααα+ Γvh. (4)

Next, a feature constraint is constructed based on the in-
put LR image Y . First, the first and second derivative opera-
tors are applied horizontally and vertically to the input image
to generate four feature images. Each feature image is parti-
tioned into q patches, and the corresponding patches from the
four feature images are concatenated to form a single feature
vector ỹi (i = 1, . . . , q). Similarly, training feature vectors
are extracted from the feature images obtained by applying
the same derivative operators to the training images in the
database. Given the feature dictionary D̃l constructed from
the training feature vectors, the sparse representation of the
feature vector ỹi is given by

ỹi = D̃lαααi + ṽi. (5)

Since the first and second derivatives and the downsampling
operation are all linear operations, Eqs. (2) and (5) share the
same sparse code. In the image domain, the composite ver-
sion of the feature vector ỹ is expressed as

ỹ = D̃
l
ααα+ ṽ. (6)

where D̃
l

is a block diagonal dictionary containing the feature
dictionaries D̃l on the main diagonal. Note that the dictionar-
ies Dh and D̃l are trained together by adopting the dictionary
training method presented in [15].

The joint regularization problem is formed by jointly min-
imizing the noise term of Eq. (1) and the sparse code under
the two constraints constructed from (4) and (6):

min
X,ααα

{∥∥∥Y − CX
∥∥∥2
2
+ λ

∥∥∥ααα∥∥∥
1
+ γ1

∥∥∥X − ΓDhααα
∥∥∥2
2

+ γ2

∥∥∥ỹ − D̃
l
ααα
∥∥∥2
2

}
,

(7)

where λ, γ1, and γ2 are regularization parameters.
In the regularization problem formulated in (7), the last

two regularization terms are built from the external informa-
tion source. However, internal information can also be uti-
lized to improve the reconstruction accuracy. To this end, lo-
cal and non-local constraints are proposed in the next subsec-
tion, which exploit information from the LR depth image and
the registered HR intensity image, respectively.
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2.2. Local and non-local regularization terms

Modern range cameras are able to capture simultaneously the
depth image and its corresponding intensity image. The HR
intensity image contains high-frequency information that can
help enhance the resolution of the corresponding LR depth
image. Depth images are often dominated by sharp edges
surrounded by plain areas. Therefore, the target HR image X
may be modeled as

X = UX + ϵϵϵ, (8)

where U is a filter that smooths out the plain areas while pre-
serving edges, and ϵϵϵ is the residual error. Similarly to the
bilateral filtering approach proposed in [2], the pixels in X
are represented by a weighted average of their neighboring
pixels. Specifically, let N (k) denote the set of indices of the
neighboring pixels of Xk. Then, the pixel Xk is expressed as

Xk =
∑

l∈N (k)

Uk,lXl + ϵk subject to
∑

l∈N (k)

Uk,l = 1. (9)

In conventional bilateral filtering, the weights Uk,l are com-
puted from the input image. In SR problems, however, we
have no access to the HR depth image. Instead, we calcu-
late Uk,l from the input HR intensity image since the edges in
both depth and intensity images often co-exist. Let Zk denote
the intensity pixels corresponding to Xk. The weight Uk,l is
computed as follows:

Uk,l =
1

uk
exp

(
− f(Zk, Zl)

h2
f

)
exp

(
− g(k, l)

h2
g

)
, (10)

where the functions f(Zk, Zl) and g(k, l) compute the inten-
sity and the geometric distances between Zk and Zl, hf and
hg are the smoothing parameters, and uk is a normalization
constant. The weights obtained from Eq. (10) are used to
form the k-th row of the weight matrix U . We should note that
the k-th row of U also comprises many zero elements, corre-
sponding to the pixel of X whose indices are not in N (k).

Natural depth images contain redundant information,
which can be utilized to regulate the image reconstruction;
we use this redundancy to construct a non-local constraint.
Let W denote an M × M matrix representing a low-pass
filter. Similarly to (8), the HR depth image X can be modeled
as

X = WX + ννν. (11)

In other words, every pixel is represented as a weighted linear
combination of other pixels in the image plus a noise term.
The k-th pixel Xk is represented by its neighboring pixels as
follows:

Xk =
∑

l∈N (k)

Wk,lXl + νk subject to
∑

l∈N (k)

Wk,l = 1,

(12)

The weights Wk,l are obtained by computing the similarity
between two patches xk and xl, where k and l represent the
centers of the two patches. The weight Wk,l is obtained from

Wk,l =
1

wk
exp

(
−

∥xk − xl∥22
h2

)
, (13)

where wk is the normalization factor and h is the smooth-
ing parameter. Compared to Uk,l, which is generated from
computing the difference between the intensity pixel and its
neighboring pixel, Wk,l is a function of the distance between
the target depth patch and its neighboring patch.

The local and non-local constraints in (8) and (11) can
be incorporated into (7) as regularizers. The regularization
problem becomes

min
X,ααα

{∥∥∥Y − CX
∥∥∥2
2
+ λ

∥∥∥ααα∥∥∥
1
+ γ1

∥∥∥X − ΓDhααα
∥∥∥2
2

+γ2

∥∥∥ỹ − D̃
l
ααα
∥∥∥2
2
+ γl

∥∥∥(I − U)X
∥∥∥2
2
+ γnl

∥∥∥(I −W )X
∥∥∥2
2

}
.

(14)
The two unknowns X and ααα can be computed at the image
level simultaneously by taking the partial derivative of (14)
with respect to X and ααα, and setting the derivative to 0. To
facilitate the differentiation, the L1-norm term is replaced by
the Huber norm since the latter is continuously differentiable
[16].

3. EXPERIMENTAL RESULTS

This section presents experimental results and comparison
with other state-of-the-art depth SR methods. The experi-
mental procedure for testing the proposed SRIE algorithm is
introduced first in the next subsection.

3.1. Experimental procedures

The proposed algorithm is evaluated on seven test images:
Poster and Tsukuba from Middlebury database; Ballet and
Dancer from MSR3DVideo database; Tanks, Pyramid, and
Book from the synthetic image database of [17]. These depth
images are downsampled by a factor of 3 to obtain the input
LR images. For each depth image, a registered HR intensity
image is also captured. The training image database contains
33 HR depth images from Middlebury database (excluding
the test images). This database is used to train the LR-HR
dictionary pair (Dl, Dh).

The parameters for constructing the local and non-local
regularization terms are defined as follows. For the local reg-
ularization term, the geometric smoothing parameter hg and
the intensity smoothing parameter hf are set to 3 and 10, re-
spectively; the search window is fixed at 7×7. For the non-
local regularization term, the search window for comparing
patch similarity is set to 13×13 with a patch size of 5×5,
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(a) Ground Truth (b) JBU (c) JDSR (d) SRIE-SP (e) SRIE

Fig. 1. Image Tsukuba reconstructed by different SR methods. Image (a) shows the ground truth HR image. Images (b)-(e) are
reconstructed by JBU, J-DSR, SRIE-SP, and SRIE.

and the smoothing parameter h is set to 10. Furthermore, the
values of the regularization parameters λ, γ1, γ2, γl and γnl
in Eq. (14) are set to 1, 0.2, 0.2, 0.1, and 0.1, respectively,
throughout the experiment.

Two objective measures are used to evaluate the quality of
the reconstructed images: peak signal-to-noise ratio (PSNR)
and relative error rate (RER). Here we briefly introduce the
RER measure. Let X be the reference (ideal) image and X∗

the reconstructed image. RER maps the relative errors of the
reconstructed depth pixels to the range [0, 1], using an expo-
nential function:

RER =
1

N0

N0∑
i=1

exp
(
− β0

|Xi −X∗
i |

Xi

)
, (15)

where β is a positive parameter that controls the decay rate
of the exponential function; in the following experiment, β is
fixed at 500.

3.2. Comparison with other depth SR methods

The proposed SRIE method is compared with other depth SR
methods, namely bicubic interpolation (BI) [18], joint bilat-
eral upsampling (JBU) [3], and joint learning-based depth SR
(J-DSR) [11]. For both JBU and J-DSR, which involve bilat-
eral filtering, the search window is set to 7× 7 pixels, and the
parameters hs and hg are set to 10 and 3, respectively; these
setups are the same as those of the proposed SRIE method.
In addition, the performance of two versions of the proposed
algorithm are also investigated: SRIE with only the sparse
reconstruction term (SRIE-SP) (7) and SRIE with all three
terms (14). Note that SRIE-SP only exploits high-frequency
information from the image database.

Table 1 shows the PSNRs and RERs of the reconstructed
images, where the bold values indicate the largest PSNR and
the smallest RER. For all test images, the proposed SRIE gen-
erates the highest PSNRs and the lowest RERs. Figures 1
shows the HR depth images Tsukuba reconstructed by differ-
ent SR methods. These figures clearly demonstrate that the
proposed SRIE method produces sharper and clearer edges
with fewer artifacts.

Table 1. PSNR (dB) and RER (%) performances for different
SR methods: JBU, J-DSR, the proposed SRIE-SP and SRIE.
For each test image, the top line shows the PSNR, while the
bottom line shows the RER.

JBU J-DSR SRIE-SP SRIE
Poster 42.23 47.64 47.52 48.06

3.45 1.94 1.97 1.47
Tsukuba 31.28 34.39 34.30 34.82

12.65 8.66 8.94 7.43
Ballet 36.24 39.71 39.35 40.14

5.12 3.81 4.25 3.39
Dancer 43.22 45.25 45.04 45.46

2.87 1.88 1.90 1.86
Tanks 40.85 42.30 42.14 42.54

8.17 6.11 6.34 5.76
Pyramid 38.77 41.96 41.94 42.68

3.79 2.96 3.25 2.39
Book 44.53 49.57 49.38 49.88

1.38 0.80 0.79 0.68
Average 39.59 42.97 42.81 43.37

5.35 3.74 3.92 3.28

4. CONCLUSION

In this paper, we proposed a new depth super-resolution
method exploiting internal and external information from the
input depth image, the registered HR intensity image, and an
image database. A joint regularization based SR problem is
formulated with different regularization terms. Specifically,
the sparse reconstruction term is formed from a depth image
database. The local and non-local regularization terms are
built from a high-resolution intensity image and the input
depth image. In the experimental stage, the proposed SRIE
method was compared to several state-of-the-art depth super-
resolution methods. The experimental results confirm the
superiority of the proposed method.
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