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ABSTRACT

Image Super-resolution (SR) reconstruction techniques based
on sparse representation have attracted ever-increasing atten-
tions in recent years, where the choice of over-complete dic-
tionary is of prime important for reconstruction quality. How-
ever, most of the image SR methods based on sparse represen-
tation fail to consider the discrimination and the redundance
of the dictionaries, which lead to obvious SR reconstruction
artifacts. In this paper, we propose a novel image SR frame-
work using coupled fisher discrimination dictionary learning
(CFDDL). With CFDDL, a pair of discriminative dictionar-
ies are first learned for the same class of high-resolution (HR)
image patches and corresponding low-resolution (LR) image
patches, respectively. Then, we utilize the identical sparse
representation for the same class of HR and LR image patch-
es, which can not only discover the inherent relationship be-
tween the HR and LR image patches but also enhance the
computational efficiency. Extensive experiments compared
with several other SR methods demonstrate the superiority of
the proposed method in terms of subjective evaluation as well
as objective evaluation.

Index Terms— Super-resolution (SR), sparse coding,
coupled fisher discrimination dictionary

1. INTRODUCTION

Image super-resolution (SR) reconstruction is currently a very
active field of research [1]. It is the inverse problem of recov-
ering a high-resolution (HR) image from one or more low-
resolution (LR) observation images. Due to the physical lim-
itation of relevant imaging devices (e.g., digital cameras, cell
phone cameras or surveillance cameras), it is hard to obtain
the desired HR images. Therefore, when the physical devices
can not work, people resort signal processing techniques to
restore the potential information hidden in the source. Hence,
lots of image SR reconstruction methods [2, 3, 4, 5, 6, 7, 8, 9,
10] have been reported in recent years.

Currently, sparse representation techniques [4, 6, 7, 8]
are employed to perform image SR. In the work of Yang et
al. [4], by enforcing l1-norm sparsity prior regularization, an
over-complete dictionary is learned to perform image SR re-
construction, namely ScSR. LR image patches have the same

sparse representation with their corresponding HR counter-
parts, which can reduce the computational complexity but ig-
nore the structure difference between the HR and LR image
patches. Wang et al. [7] proposed a semi-coupled dictionary
learning (SCDL) scheme by learning a linear mapping for
connecting HR and LR image patches sparse representation.
Their method protects the structure of HR and LR images suc-
cessfully, but at the cost of high computational time. Huang
et al. [8] further proposed a full coupled dictionary learning
method for image SR, in which a common feature space is
learned for connecting the sparse representation of HR and L-
R image patches. However, the main drawback of this method
is low computational efficiency.

In this paper, we focus on studying the sparse represen-
tation method for image SR. Motivated by [11], we find that
learning a fisher discriminative dictionary can not only pre-
serve the diversity of the dictionary for different classes of
image patches but also make the dictionary more discrimina-
tive. Therefore, we propose a novel single image SR recon-
struction framework based on coupled fisher discrimination
dictionary learning (CFDDL). Specifically, we first learn the
coupled discriminative dictionaries for pairs of HR and LR
image patches. Then, the HR image patch is reconstructed
over the HR dictionary with sparse coefficients coded by the
same class of LR image patch over the LR dictionary, which
not only discover the inherent relationship between HR image
patches and their corresponding counterparts but also enhance
the computational efficiency. Fig. 1 illustrates the flowchart of
the proposed method.

The rest of the paper is organized as follows. Section 2
presents a form of preparation. Section 3 presents our algo-
rithm. Experimental results are given in Section 4. Section 5
concludes the paper.

2. PRELIMINARY

2.1. Sparse Coding

Sparse coding aims to approximate each input signal x ∈ Rm

with a weighted linear combination of a few elementary sig-
nals called basis atoms, often chosen from an over-complete
dictionaryD ∈ Rm×k(m < k). The classical objective func-
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Fig. 1. Flowchart of the proposed image SR method.

tion of sparse coding can be defined as:

min
D,{αi}Ni=1

∑N

i=1
‖xi −Dαi‖22 + λ‖αi‖1

s.t. ‖di‖2 ≤ 1, i = 1, 2..., k,

(1)

where di is the i-th column of D, λ is the regularization pa-
rameter, the term ‖αi‖1 is to enforce sparsity, and the con-
straint term ‖di‖2 removes the scaling ambiguity.

2.2. Joint Sparse Coding

Unlike the sparse coding, Yang et al. [4] used joint sparse
coding to learn the coupled dictionary pair Dy and Dx for
HR image patches {yi}Ni=1 and LR image patches {xi}Ni=1,
respectively, and the sparse representation of xi in terms of
Dx should be same as that of yi in terms of Dy . Since the
coupled dictionary pair are learned, the HR image patch can
be reconstructed over the HR dictionary with sparse coeffi-
cients coded by corresponding LR image patch over the LR
dictionary. The above problem can be defined as:

min
Dx,Dy,{αx\y

i }Ni=1

∑N

i=1
{1
2
‖xi −Dxαxi ‖22 + λ‖αxi ‖1}

+{1
2
‖yi −Dyαyi ‖

2
2 + λ‖αyi ‖1}

s.t. ‖dxi ‖2 ≤ 1, ‖dyi ‖
2 ≤ 1,αxi = αyi , i = 1, 2..., k,

(2)

which is equivalent to

min
D̄,{αi}Ni=1

∑N

i=1
‖x̄i − D̄αi‖22 + λ‖αi‖1

s.t. ‖d̄i‖2 ≤ 1, i = 1, 2..., k,

(3)

where x̄i =
[
xi
yi

]
and D̄ =

[
Dx
Dy

]
, d̄i is the i-th column

of D̄. Since only a pair of over-complete dictionariesDx and
Dy are learned for all the various HR and LR image patches,
the learned dictionaries have no capacities of discrimination
and representation.

3. PROPOSED METHOD

In this section, we propose a novel image SR method based
on CFDDL. We will detail this method in the following sub-
sections.

3.1. Problem Formulation

Instead of learning an over-complete dictionary for all class-
es, we learn a coupled fisher discrimination dictionaryDx =
[Dx,1, . . . ,Dx,c] and Dy = [Dy,1, . . . ,Dy,c], where Dx,i
and Dy,i are the i-th class of HR and LR sub-dictionary,
respectively, and c is the total number of classes. Let im-
age patch sets X = [X1, . . . ,Xc] ∈ Rd1×n and Y =
[Y1, . . . ,Yc] ∈ Rd2×n be n data pairs extracted from HR and
LR images, respectively, where Xi and Yi are the subsets of
LR and HR image patches from class i, respectively.

Our CFDDL-based image SR can be approached as solv-
ing the following minimization problem:

min
Dx,Dy,A

EDL(X,Dx,A) +EDL(Y ,Dy,A)

+ λ1‖A‖1 + λ2F (A).
(4)

In Eq. (4), λ1, λ2 are regularization parameters to balance the
terms in the objective function, andEDL denotes the discrim-
inative fidelity term and can be defined as follows:

EDL(Xi,Dx,Ai) = ‖Xi −DxAi‖2F + ‖Xi −Dx,iAii‖2F
+
∑c

j=1,j 6=i
‖Dx,jAji‖

2
F ,

EDL(Yi,Dy,Ai) = ‖Yi −DyAi‖2F + ‖Yi −Dy,iAii‖2F
+
∑c

j=1,j 6=i
‖Dy,jAji‖

2
F ,

(5)

where Ai = [A1
i ; . . . ;A

j
i ; . . . ;A

c
i ] is the representation of

Xi (or Yi) over Dx (or Dy), Aji is the sparse coefficients
of Xi (or Yi) over the sub-dictionary Dx,j (or Dy,j). The
first term denotes that the dictionary Dx (or Dy) should be
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able to well represent Xi (or Yi). If we add a constrain-
t to make the second term small, better discrimination will
be achieved. Since Aii has some significant coefficients, i.e.,
‖Xi −Dx,iAii‖2F (or ‖Yi −Dy,iAii‖2F ) is small, the Aji is
nearly zero which makes the last term small.

In Eq. (4), F (A) is the discriminative coefficient term. To
make dictionary Dx (or Dy) be discriminative for the sam-
ples in X (or Y ), we can make the sparse coefficients be
discriminative by using Fisher discrimination criterion [12].
F (A) can be rewritten as:

F (A) = tr(W (A))− tr(B(A)) + µ‖A‖2F , (6)

where ‖A‖2F is added to make F (A) convex and stable, µ is
a parameter, andW (A) andB(A) are denoted as the within-
class scatter ofA and the between-class scatter ofA, respec-
tively, which can be defined as:

W (A) =
∑c

i=1

∑
ak∈Ai

(ak −mi)(ak −mi)
T ,

B(A) =
∑c

i=1
ni(mi −m)(mi −m)T ,

(7)

where ni is the number of samples inAi, andmi andm are
denoted as the mean vector ofAi andA, respectively.

Grouping the two EDL together and denoting

X̄i =

[
Xi

Yi

]
, D̄ =

[
Dx
Dy

]
, (8)

we can convert Eq. (4) to the standard fisher discrimination
dictionary learning [11] problem:

min
D̄,A

∑c

i=1
{‖X̄i − D̄Ai‖2F + ‖X̄i − D̄iAii‖2F

+
∑c

j=1,j 6=i
‖D̄jAji‖

2
F }+ λ1‖A‖1 + λ2F (A)

s.t. ‖d̄k‖2 ≤ 1,∀ k.

(9)

3.2. Optimization

While the objective function in Eq. (9) is not jointly convex
to D̄ and A, it is convex when D̄ is fixed or A is fixed.
Therefore, we separate the objective function into two sub-
problems: updatingA by fixing D̄; and updatingA by fixing
D̄. Given training image dataX and Y , we apply an iterative
algorithm to optimize the dictionaries D̄ and coefficients A,
respectively.

3.2.1. UpdatingA

We first fix D̄, and the objective function in Eq. (9) becomes a
sparse coding problem to compute A. We calculate Ai class
by class. When calculate Ai, all Aj(j 6= i), are fixed. Thus
we can calculate the sparse coefficientsAi as follows:

min
Ai

‖X̄i − D̄Ai‖2F + ‖X̄i − D̄iAii‖2F

+
∑c

j=1,j 6=i
‖D̄jAji‖

2
F + λ1‖Ai‖1 + λ2Fi(Ai).

(10)

Many optimization methods can solve Eq. (10) effectively,
such as proximal methods [13], Iterative Projection Method
(IPM) [14], etc. In this paper, we choose the IPM [14] to
solve it.

3.2.2. Updating D̄

When the sparse coefficients A are fixed, we update the dic-
tionary D̄i class by class. On calculating D̄i, all D̄j(j 6= i),
are fixed. Thus, we convert (9) into the following problem:

min
D̄i

‖X̄ − D̄iAi −
∑c

j=1,j 6=i
D̄jA

j‖2F

+ ‖X̄i − D̄iAii‖2F +
∑c

j=1,j 6=i
‖D̄iAij‖2F ,

(11)

whereAi is the sparse coefficients of X̄ over D̄i. Eq. (11) is
a quadratic programming problem and can be solved by using
the algorithm in [15].

3.3. Synthesis

After learning the discriminative dictionary pairDx andDy ,
for a given LR image y, we can easily convert it into an HR
image x by solving the following optimization:

min
A

∑c

i=1
{‖x̄i − D̄Ai‖2F + ‖x̄i − D̄iAii‖2F

+
∑c

j=1,j 6=i
‖D̄jAji‖

2
F }+ λ1‖A‖1 + λ2F (A),

(12)

where x̄i =
[
xi
yi

]
and D̄ =

[
Dx
Dy

]
, yi is a patch of y

and xi is the corresponding patch in the intermediate estimate
of x to be synthesized. The solving method of Eq. (12) is as
same to Eq. (10). Finally, xi can be reconstructed as:

x̂i =DxÂi. (13)

After all the patches are estimated, the estimation of the
desired HR image x can then be obtained. In our synthesis
method, we need an initial estimation of x. For example, x
can be simply initialized by bicubic interpolation.

4. EXPERIMENTS

In this section, we verify the performance of our CDFFL-
based image SR method. The training image patch pairs are
collected from the Kodak PhotoCD dataset, which has no
relation with the testing images. The size of image patch
is 5 × 5. Pre-clustering is done and the cluster number is
set to be 6. The numbers of dictionary atoms for both Dx
and Dy are set to be 200 for each cluster. In the follow-
ing experiments, we empirically set regularization parameter
λ1 = 0.005, λ2 = 0.05, and µ = 0.05.

Considering the limited space, we only compare our
method with several representative methods, such as nearest,
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Table 1. The PSNR(dB) and FSIM results (luminance components) of reconstructed HR images (scaling factor = 3).

Image
Nearest Bicubic NE [16] ScSR [4] Proposed

PSNR FSIM PSNR FSIM PSNR FSIM PSNR FSIM PSNR FSIM

Butterfly 18.69 0.7406 20.48 0.7645 19.20 0.6946 20.73 0.7688 23.63 0.8254
Lena 24.45 0.8041 25.86 0.8602 24.06 0.8318 25.92 0.8461 29.11 0.9090

Parrots 23.05 0.8492 24.73 0.8996 23.15 0.8783 24.83 0.8863 27.18 0.9257
Starfish 21.42 0.7690 22.95 0.8379 21.35 0.8063 22.93 0.8159 26.25 0.8906
Flower 22.42 0.7369 23.84 0.8078 22.12 0.7773 23.80 0.7814 26.70 0.8652

Girl 27.51 0.8067 28.33 0.8692 27.04 0.8347 28.94 0.8560 31.66 0.9032
Hat 24.90 0.8020 26.31 0.8418 24.29 0.8125 26.51 0.8298 28.42 0.8753

Parents 23.12 0.7947 24.57 0.8581 23.30 0.8335 24.52 0.8395 28.05 0.9082
Plants 25.58 0.8065 27.07 0.8533 25.53 0.8194 27.19 0.8425 30.51 0.9047

Raccon 24.08 0.7804 25.42 0.8477 23.46 0.8209 25.61 0.8166 27.48 0.8692

Fig. 2. Reconstructed HR images of Butterfly by different
methods . Top row: Original, Nearest, Bicubic. Bottom row:
NE [16], ScSR [4], Proposed.

Fig. 3. Reconstructed HR images of Starfish by differen-
t methods. Top row: Original, Nearest, Bicubic. Bottom row:
NE [16], ScSR [4], Proposed.

bicubic, NE [16], and ScSR [4]. All the codes are download-
ed from the authors’ personal websites. For fair comparisons,
the test LR input images are downgraded from the ground-
truth HR images by the same way.

To objectively assess the quality of the SR reconstruction,
PSNR and FSIM [17] are adopted to evaluate the quality of
SR reconstruction. For color images, we only calculate PSNR
values for the luminance channel. The PSNR and FSIM re-
sults are listed in Table 1, meanwhile Fig. 2 and Fig. 3 show
the comparison results of our proposed method and several
other representative methods. As shown in Fig. 2 and Fig. 3,
some ringing artifacts for the edges can be found in ScSR. It
can also be observed that the proposed method achieves the
highest PSNR values for all of the test images, and generally
outperforms state-of-the-art SR methods.

5. CONCLUSION

In this paper, we propose a novel single image SR framework
by incorporating discriminative sparse coding, namely CFD-
DL. The proposed method guarantees that the sparse repre-
sentation, derived from the different class LR image patches
with their corresponding dictionaries, can well recover their
HR counterparts with the class-specific HR patch dictionar-
ies. Compared with the several state-of-the-art SR methods,
our proposed method improves the reconstruction quality sig-
nificantly, and at the same time removes the artifacts.
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