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ABSTRACT

One of the biggest challenges in view interpolation is to fill
the regions without projective information in the synthesized
view. In this paper, we present a new approach that identifies
and corrects different types of missing information. In the
first stage, we propose a fast solution to tackle the problems
of cracks and ghost, common artifacts in the view interpola-
tion process. Then, we complete larger holes by exploring the
disparity map as an additional cue to select the best patch in
a patch-based inpainting procedure. Our experimental results
indicate that we were able to outperform current state of the
art hole filling techniques for view interpolation.

Index Terms— View interpolation, hole filling, DIBR,
view synthesis, inpainting

1. INTRODUCTION

With the recent development of 3D displays, much more con-
tent is now generated using multiple cameras. This fostered
the research of DIBR (Depth Image Based Rendering) tech-
niques, which consists of using a single reference image (usu-
ally from the left camera) with its respective disparity map to
generate another synthesized view, usually a reconstruction of
the second camera.

DIBR techniques are of great importance for stereo video
encoding since they can greatly reduce the required band-
width by only encoding one color (reference) image and its
respective grayscale disparity map, instead of two color im-
ages. And by having the ability to generate other synthesized
views with arbitrary baselines, many applications may be pos-
sible such as free viewpoint camera where the spectator can
change in real time the desired view of the scene, baseline re-
targeting to adapt the stereo baseline depending on the char-
acteristics of each display, etc.

However, the generation of interpolated views presents
several challenges, and visual artifacts are common. In this
paper we directly deal with three of the most common classes
of visual artifacts: cracks, which are generated due to the
quantization of the disparity map, ghosts, which occur when
we have a disparity discontinuity that is not well defined in the
image domain, and holes, that are larger areas of unprojected
data due to occlusions and/or errors in the disparity map. The
pipeline of our approach can be seen in Figure 1.

2. RELATED WORK

The crack holes are long and thin, usually 1 to 2 pixels wide.
To solve this problem some techniques estimate the dispar-
ity of the synthetic view and fill the cracks in the disparity
with some simple filtering procedures [1, 2], such as a me-
dian filter. Another solution is to apply a simple filtering or
inpainting algorithm directly to the synthetic view cracks [3].

The holes caused by disocclusions, on the other hand, are
usually large both in length and width. Inpainting methods
that propagate information through diffusion [4], even if they
propagate incoming edges such as [5], are not able to propa-
gate complex textures. To coherently fill those holes a more
robust solution is needed. Mori and colleagues [2] proposed
to project both the left and right views in the synthetic view
position. Both views are combined using an alpha blending
procedure, and the holes from one projection are mostly com-
pleted by the information of the other. The remaining holes
are usually small, and a simple inpainting algorithm can be
used to estimate them. However, since this procedure uses
both stereo views and depth maps, it is not suitable for DIBR.

An interesting inpainting solution with texture synthesis
was proposed by Criminisi and colleagues [6], which fills the
holes by copying patches from the available image. They
showed that by filling the holes within a certain order, pri-
oritizing first complete regions that had strong edges inter-
sected with the hole, their approach was able to correctly
synthesize textures while propagating the edges. By recog-
nizing that holes generated by occlusion typically belong to
the background, Daribo and Saito [7] proposed to change the
priority function from [6] to fill the holes starting from the
background. By using the disparity information, they were
able to correctly propagate the background texture informa-
tion to fill the holes and achieve more coherent results. Oh
and colleagues [1] also proposed to use the disparity infor-
mation in the inpaint procedure. They adapted the inpaint
order from Telea’s algorithm [8], but the results are not very
good in large areas. This is due to the limitations of Telea’s
algorithm that, similarly to Bertalmio’s approach, propagates
color information as well as edges but is not able to propa-
gate complex textures. Hervieu and colleagues [9] presented
a two-stage process: in the first one, the disparity map is in-
painted, and used as a basis to inpaint the stereo pair using an
extension of [6]. Mao et al. [10] presented an approach for
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identifying expansion holes, and two methods for correcting
them: the first one, based on linear interpolation, is very sim-
ple and fast; the second one, based on graphs with a sparsity
prior, is better but more expensive computationally.

A different approach was developed by Solh and Al-
Regib [11], called Hierarchical Hole-Filling (HHF). They
produce pyramid-like lower resolution estimates of the syn-
thetic view with holes by taking the mean between blocks of
5 × 5 of the valid pixels (i.e. ignoring pixels without projec-
tion information), and propagating it to one pixel in the next
scale. Within a few multi-resolution scales they obtain a low
resolution estimative of the synthetic view without holes. By
propagating this low resolution image along the multi-scale
structure they estimate the holes in the original image.

Solh and AlRegib also proposed to use a pre-processed
image as the input for the HHF algorithm. This algorithm is
called depth adaptive HHF, and the pre-processed image is the
synthetic view with holes weighted according to the dispar-
ity. The main idea is to give a higher importance (weight) for
lower disparity regions since they belong to the background,
and holes ideally should be completed by background pixels.
However the depth adaptive HHF has a minor impact in the
final results over the original HHF.

3. THE PROPOSED APPROACH

3.1. Cracks Removal

To tackle the artifacts caused by cracks, our first step is to
correctly identify them. We compute a binary image S that
contains all the pixels in the synthetic view that do not have
any projection information. Then, S is filtered with a mor-
phological opening operation using a structuring elementHC ,
resulting in a filtered image called Ŝ. In this work, we used
HC with a horizontal line format, with length of 1 pixel and
width of 2 pixels, and the inverse is used to verify vertical
small holes.

Image Ŝ fills out thin vertical lines of S, so that the binary
mask C containing all the cracks can be found by:

C = S \ Ŝ, (1)

with \ being the absolute complement operator in set termi-
nology. The result of this identification process can be seen in
the block diagram (Fig. 1), where the cracks are painted red
in the images that illustrates the “fill cracks” stage.

After identifying all the cracks in the synthesized image,
we use a fast inpainting procedure proposed by Oliveira and
colleagues [4]. Let Ω be the crack to be inpainted and ∂Ω
its boundary, the inpainting procedure is approximated by an
isotropic diffusion that propagates the information from ∂Ω
to Ω. Initially, the color information of Ω is cleared and the
diffusion process is approximated by repeatedly convolving
the region to be inpainted with the diffusion kernel shown in
Fig. 2.

Fig. 1. Block diagram of the proposed algorithm.
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Fig. 2. Diffusion kernel used, with a = 0.073235 and b =
0.176765.

This simple approach may introduce blurring when Ω
crosses the boundaries of high contrast edges. In practice,
however, the cracks are usually only 1 or 2 pixels wide (as
defined by the structuring element), so only a small number
of iterations is needed, and the resulting blurring artifacts are
not noticeable.

Additionally, we also detect small isolated “islands” of
projected pixels within holes of unknown data, typically due
to errors in the disparity map. These outliers are identified and
removed using morphological opening with linear structuring
elements (1× 2 for horizontal outliers, and 3× 1 for vertical
ones).

3.2. Ghosts Removal

Due to the finite size of image sensors and imprecisions of the
disparity map, pixels around an image boundary are usually
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composed by the foreground and background objects. The
ghost artifacts consist in foreground information being prop-
agated to background regions due to the lack of information
of the disparity map in representing those smooth boundaries.
It is important to notice that those artifacts can greatly impact
the inpaint algorithm, so it is necessary to deal with them first.

In order to identify the regions potentially related to
ghosts, we calculate the binary image G that is computed
by excluding the crack regions C from S as G = S − C.
After we have the regions G that may contain ghosts, we use
the morphological dilation operator with a non-symmetric
structural element HG to expand the occluded regions in the
direction of the reference camera to the virtual camera. For
example, if we have one reference camera and generate a
synthetic view using a virtual camera on the right side, the
background information of all the holes caused by occlusion
problems will be on their right side. Therefore, depending
on the side, a different mask HG is generated. In all of our
tests, the structural element HG used was a horizontal line,
one pixel tall and 3 pixels wide, whose configuration varies
depending on the projection orientation (left or right). Then
we separate candidates using the absolute complement oper-
ator in the processed image Ĝ, obtaining σΩ, as in the cracks
removal approach. Fig. 3 illustrates this process.

Fig. 3. Zoom of monopoly dataset [12]. Notation: σΩ are
ghost candidates. Ω, F and B represent the hole, foreground
and background respectively. ψB and ψF are patches for eval-
uation of the target (T ) similarity with F and B.

The next step is to evaluate each candidate point T ∈ σΩ

based on its similarity with neighboring patches. For that pur-
pose, we compute the mean intensity within 3×3 patches ψB

and ψF , which are neighbors of T in the background and fore-
ground, respectively, and compute the differences dB and dF
from T to these mean values. If dB < dT and dB < α,
where T is a similarity threshold, then T is kept attached to
the background. Otherwise, it is considered as belonging to
the foreground, and moved horizontally to the other extremity
of the hole. In our tests, we used α = 11 as the threshold in
all experiments.

3.3. Hole Filling

Due to the sampling theorem, there are constraints to the
spatial frequency content of an image that cannot be recon-

structed once lost. In those cases of missing or damaged
areas, the best we can achieve is to produce a plausible result
rather than a perfect reconstruction [4].

Since it is not uncommon to have big holes in DIBR tech-
niques caused by occlusions and/or disparity problems, we
need to synthesize not only a plausible color within the holes
but also to recreate a locally adequate texture. For this task
we propose to extend the texture synthesis work of [6] to pri-
oritize the background regions in the hole filling algorithm,
since the occluded regions are by definition a portion of the
background that has been disoccluded.

Given a hole Ω and its boundary ∂Ω, the first step is to find
the patch Ψp with p ∈ ∂Ω that must be inpainted. We then
search for a patch Ψq in the source region Φ = I−Ω, where I
is the image to be inpainted, and copy its texture to Ψp. The
main idea is to use Φ as a texture database, and copy small
patches Ψq to Ω according to the local information provided
by Ψp.

The first step is to define the hole filling order, aiming to
both preserve incoming edges and prioritize the background.
The choice of p for each iteration is given by the following
priority equation P (p) = C(p)E(p) where P (p) is the pri-
ority for a given pixel p ∈ ∂Ω, C(p) is the confidence term
(described in [6]) and E(p) is the depth term. They are de-
fined as follows:

C(p) =

∑
q∈Ψp∩(I−Ω)

C(q)

|Ψp|
, (2)

E(p) =

∑
q∈Ψp∩(I−Ω)

d(q)

|d(p)|
, (3)

where |Ψp| is the area of Ψp, |d(p)| is the area of d(p) (in
terms of number of pixels), d(q) is the depth value for each
point of the patch. The priority P (p) is calculated for every
p ∈ ∂Ω for each iteration, and the point with the biggest value
is chosen. In the initial configuration, C(p) is set to zero ∀p ∈
Ω, and C(p) = 1 ∀p ∈ I − Ω.

The confidence term C(p) measures the amount of reli-
able information around the pixel p, so it prioritizes filling
patches which have more pixels already filled. The depth
term E(p) prioritizes the greatest depths, which naturally fa-
vor background pixels.

After choosing the destination patch Ψp to be filled, the
last step is to find the origin patch Ψq that is obtained from
Φ. We choose Ψq by searching in Φ the patch that is the most
similar to Ψp:

Ψq = arg min
Ψq∈Φ

s(Ψp,Ψq), (4)

s(Ψp,Ψq) =
∑

x∈Ωv(Ψp) ‖Ψp(x)−Ψq(x)‖2,

where Ωv(Ψp) denotes the set of pixels in Ψp containing valid
information, Ψp(x) is the RGB color vector related to pixel x.
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Method Aloe1 Aloe5 Art1 Art5 Books1 Books5 Monopoly1 Monopoly5 Mean
Criminisi 26.8196 26.9094 23.6227 23.7331 27.2535 29.3389 27.8316 23.6397 26.1436

HHF 26.7166 27.5551 24.1260 24.9558 27.7551 29.2626 29.2352 26.7045 27.0389
Proposed 27.4329 27.7281 26.3628 25.2687 29.6710 29.7081 29.6776 28.7181 28.0709

Table 1. Quantitative evaluation of PSNR.

Warped View1 to View3 HHF Criminisi Proposed approach Ground truth

Fig. 4. Zoomed region from the Aloe dataset.

Thus, Ψq should be a patch that has similar texture and colors
with Ψp.

4. EXPERIMENTAL RESULTS

To evaluate the proposed approach we use the datasets and
disparity ground truth from the well known Middlebury
dataset [12]. We also compare our results with the traditional
exemplar-based inpainting approach [6] and the Hierarchical
Hole-Filling (HHF) from Solh and AlRegib [11] qualitatively,
through visual inspection, and quantitatively, using the Peak
Signal-to-Noise Ratio (PSNR). It is important to note that
the boundaries of the interpolated images (either left or right,
depending on the reference image used) do not contain any
valid information. Although our approach, as well as [6]
and [11] are able to fill out those regions, they extrapolate
image information. These portions should be visually coher-
ent, but they are not taken into account when evaluating the
PSNR.

Results for the proposed method and competitive ap-
proaches are shown in Table 1. For the tests we used the
ground truth disparity from views 1 and 5, putting the syn-
thetic camera in the location of view 3. As it can be observed,
our method outperforms both approaches with respect to the
PSNR metric for all tested datasets. Figure 4 shows a cropped
and zoomed region of the Aloe dataset. Visual inspection in-
dicates that the use of the disparity information to guide the
hole filling algorithm was able to correctly propagate the
background information within the holes. In contrast, the re-
sults from HHF are much blurrier, which is a expected result
from the used multi-resolution approach that fills the hole
with a combination from all the surrounding pixels, regard-
less of their disparity. More results are available at http:
//www.inf.ufrgs.br/˜aqoliveira/research/.

5. CONCLUSION

In this work we first propose a simple solution for the removal
of both ghosts and cracks, common visual artifacts in DIBR
view interpolation techniques. For the cracks problem, we
first classify crack regions using simple morphological op-
erators, followed by the fast inpaint algorithm proposed by
Oliveira et al. [4]. And to eliminate the ghost artifacts we
identify the possible ghost regions and move them if neces-
sary. By eliminating the ghosts we also help the hole filling
algorithm, since they will not propagate those artifacts to the
hole.

For the hole filling problem we propose to extend the work
from Criminisi and collaborators [6] by changing the hole fill-
ing order using the depth information. By enforcing the tex-
ture propagation from the background to the foreground we
were able to outperform the hole filling algorithm from Solh
and AlRegib [11] in most of the tests, and obtain a much more
sharp interpolated view.

As future work, we would like to investigate other
disparity-based penalty metrics. We also intend to explore
the disparity within the to-be-inpainted patches to reduce the
search area for good patches, thus reducing the computational
cost. Another possible path for future work is the extension
of the patch selection scheme for video view interpolation, in
which temporal coherence is an additional constraint.
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