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ABSTRACT

The unremitting rising popularity of social media has led to an ex-

ponential increase in web activity as manifested by the vast volume

of uploaded images. This boundless volume of image data has trig-

gered the interest in image tagging. Here, an efficient hypergraph

weight estimation scheme is proposed that improves the accuracy

of image tagging, using hypergraph learning. The proposed method

models high-order relations between hypergraph vertices (i.e., users,

user social groups, tags, geo-tags, and images) by hyperedges. The

information captured by the hyperedges is efficiently distilled by es-

timating the hyperedge weights. Experiments conducted on a dataset

crawled from Flickr demonstrate the effectiveness of the proposed

approach. Specifically, an average precision of 91% at 26% recall

has been achieved for image tagging.

Index Terms— Image tagging, Hypergraph learning, Hyper-

edge weight learning.

1. INTRODUCTION

Nowadays, the overwhelming number of data uploaded to the web in

conjunction with the ever rising popularity of social media sharing

platforms has led to an indisputable need for efficient tagging meth-

ods. Image tagging is a crucial procedure, affecting considerably

both the retrieval accuracy and the organization of the images up-

loaded to the web. Popular social media sharing platforms, such as

Flickr1, Picasa Web Album2, or Instagram3, enable users to describe

the content of images by tagging them. However, quite often, the

user provided tags are far from being accurate, or may be redundant.

Despite the research effort made so far, there are persisting prob-

lems, such as achieving satisfactory efficiency and accuracy. Conse-

quently, an accurate and efficient image tagging model is of crucial

importance.

Many works were focused on image tagging, using graphs or

hypergraphs. In [1], users, tags, and images were modelled in a

graph, harnessing the information distilled from the tags, the im-

age visual attributes, and the social friendship relations among the

users. Image tagging was treated in a “query and ranking” manner

and a graph-based reinforcement algorithm for interrelated multi-

type objects was proposed. A visual image similarity graph and an

image-tag bipartite graph were fused in a unified graph in [2]. A

random walk model was proposed, employing a fusion parameter

to regularize the influence between the visual and textual informa-

tion provided by the image visual content and the tags, respectively.

In [3], image tagging was addressed within a hypergraph ranking

1http://www.flickr.com
2http://picasaweb.google.com
3http://instagram.com

canvas by enforcing group sparsity constraints. Multi-label image

annotation was formulated as a regression model with a regularized

penalty, exploiting the structural group sparsity in [4].

Hypergraphs have also been employed on various machine

learning and retrieval tasks, harnessing their higher-order relation

modelling. In [5], images were taken as vertices in a probabilis-

tic hypergraph with hyperedges, linking images according to their

visual content. In [6], a hypergraph was used for classification,

modelling the images by their visual attributes. Hypergraph learning

was also applied to social image search [7, 8, 9]. Furthermore, a

music recommendation method was developed based on hypergraph

learning, exploiting social media information and audio signal sim-

ilarities [10]. A hypergraph-based news recommendation model

was proposed in [11], encapsulating both user behaviour and news

content information.

Here, the problem of image tagging is addressed within a hy-

pergraph learning framework. The hypergraph has vertices made

by concatenating different kinds of objects (users, user groups, geo-

tags, tags, images) and hyperedges linking these vertices [12, 13, 14,

15]. In contrast to the edges of a simple graph, the hyperedges link

more than two vertices, capturing higher order relations, such as the

triple relation between a user, a tag, and an image.

Motivated by [7], an effective hyperedge weight learning

scheme is proposed, treating each hyperedge in a different man-

ner. The novelty of this paper is in the analytical solution of the

optimization problem, which leads to the weight estimation. Here,

the method in [7] is revisited by taking into account the vertex de-

gree matrix that was omitted in [7], including the topology of the

hypergraph as is captured by the incidence matrix of the hypergraph.

This way, the hyperedges capturing more informative relations are

better exploited and the impact of the less informative hyperedges

is reduced. The superiority of the proposed method is demonstrated

by its application to image tagging, extending the work presented in

[3]. Experiments conducted on a dataset from Flickr indicate the

effectiveness of the proposed method, yielding an average precision

of 91% at 26% recall for image tagging.

The outline of the paper is as follows. In Section 2, the general

hypergraph model is introduced and the ranking on a hypergraph

is detailed. The hyperedge weight learning method is addressed

in Section 3. In Section 4, the dataset is described. The hyper-

graph construction is explained in Section 5. Experimental results

are presented in Section 6, demonstrating the merits of the proposed

method. Conclusions are drawn in Section 7.

2. HYPERGRAPH MODEL

In the following, | · | denotes set cardinality, ‖.‖ is the ℓ2 norm of

a vector, and I is the identity matrix of compatible dimensions. Let
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G(V,E,w) denote a hypergraph with set of vertices V and set of

hyperedges E to which a real weight function w is assigned. The

vertex set V is made by concatenating sets of objects of different

type (users, social groups, geo-tags, tags, images). These vertices

and hyperedges form a |V | × |E| incidence matrix H with elements

H(v, e) = 1 if v ∈ e and 0 otherwise. The vertex and hyperedge

degrees are obtained by:

δ(v) =
∑

e∈E w(e)H(v, e)

δ(e) =
∑

v∈V H(v, e)







. (1)

The following diagonal matrices are defined: the vertex degree ma-

trix Du of size |V | × |V |, the hyperedge degree matrix De of size

|E| × |E|, and the |E| × |E| matrix W containing the hyperedge

weights.

Let A = D
−1/2
u HWD−1

e HTD
−1/2
u . A is a symmetric ma-

trix, as the diagonal matrices W and D−1
e commute in multiplica-

tion. Then, L = I−A is known as Zhou’s normalized Laplacian of

the hypergraph [13]. The elements of A, A(j, i), indicate the relat-

edness between the vertices j and i. To perform clustering on a hy-

pergraph, one is seeking for a real-valued ranking vector f ∈ R
|V |,

minimizing the cost function:

Ω(f) = f
T
Lf . (2)

That is, one requires all vertices with the same value in the rank-

ing vector f to be strongly connected [16]. Ω(f) is small, if the

vertices with high affinities are assigned the same label [16]. For

instance, two images are probably similar, if they are linked with

many common tags. The aforementioned optimization problem was

extended to a recommendation problem by including the ℓ2 regu-

larization norm between the ranking vector f and a query vector

y ∈ R
|V | [10]. This guarantees that the ranking vector does not

differ too much from the initial query. The function to be minimized

is then expressed as

Q(f) = Ω(f) + ϑ ||f − y||2 (3)

where ϑ is a positive regularizing parameter. The best ranking vec-

tor, f∗ = argminf Q(f), is found to be [10]:

f
∗ =

ϑ

1 + ϑ

(

I−
1

1 + ϑ
A
)−1

y. (4)

3. HYPEREDGE WEIGHT UPDATING

Clearly, all the hyperedges do not have the same effect on the learn-

ing procedure. Some relations captured by hyperedges are not as

informative as others. For example, two users might be friends

without having common interests or a user might have assigned an

irrelevant tag to an image. Thus, the hypergraph learning is en-

hanced by optimizing the hyperedge weights. Let n = |E| and

w = (w1, w2, · · · , wn)
T be formed by the elements lying in the

main diagonal of W. Moreover, we enforce 1T
nw = 1. By adding

an ℓ2 norm regularizer on w and optimizing for both w and f , the

following minimization function is defined:

argmin
f ,w

{

Q(f) + κ||w||2
}

s.t. 1T
nw = 1. (5)

The method is illustrated in Fig.1. An alternating minimization of

(5) starts with a fixed w and optimizes f as in (4). Next, f is fixed

Hypergraph Learning 

(fixed weights)  
f 

Hyperedge Weight 

Learning 

w 

Fig. 1. Description of the hyperedge weight learning method.

and w is optimized. Having fixed f , the optimization w.r.t. w is read

as:

argmin
w

{

f
T
Lf + κ||w||2

}

s.t. 1T
nw = 1. (6)

The Lagrangian function of the optimization problem is:

Ψ(w, c) = f
T
Lf + κw

T
w + c(1T

nw − 1)

= f
T
(

I−D
−1/2
u HWD

−1
e H

T
D

−1/2
u

)

f

+κw
T
w + c(1T

nw − 1). (7)

Let Λ = D
−1/2
u H. The partial derivatives of Ψ w.r.t. wi, i =

1, 2, · · · , n are given by:

∂Ψ

∂wi
=

∂

∂wi

(

−f
T
ΛWD

−1
e Λ

T
f
)

+ 2κwi + c = 0. (8)

Solving (8) w.r.t. wi, we obtain:

wi =
1

2κ

[

∂

∂wi

(

f
T
ΛWD

−1
e Λ

T
f
)

− c

]

(9)

and by substituting (9) into the constraint 1T
nw = 1, the Lagrange

multiplier is determined:

c =
1

n

[

1
T
n

∂

∂wi

(

f
T
ΛWD

−1
e Λ

T
f
)

− 2κ

]

. (10)

The partial derivative in (9) and (10) is analysed as:

∂

∂wi

(

f
T
ΛWD

−1
e Λ

T
f
)

= f
T ∂ (Λ)

∂wi
WD

−1
e Λ

T
f

+f
T
Λ
∂ (W)

∂wi
D

−1
e Λ

T
f + f

T
ΛWD

−1
e

∂
(

ΛT
)

∂wi
f

= f
T
D

−1
e (i, i)ΛiΛi

T
f − f

T
Ξif , (11)

where Λi ∈ R|V | is the i-th column of Λ. Ξi = diag(Λi)D
−1/2
u A.

Observe that Ξi is a symmetric matrix and diag(Λi) is a |V | × |V |
diagonal matrix having Λi in its main diagonal. By substituting (11)

into (10) and (9), we obtain the following closed expressions:

c =
1

n

{

f
T

n
∑

i=1

[

D
−1
e (i, i)ΛiΛi

T −Ξi

]

f − 2κ

}

wi =
1

2κ

{

f
T
[

D
−1
e (i, i)ΛiΛi

T −Ξi

]

f − c
}

. (12)

Having optimized the hyperedge weights, f is re-optimized. The

proposed method is summarized in Algorithm 1.
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Algorithm 1 Image tagging via hyperedge weight learning.

Input: The objects (users, images, social groups, geo-tags, and tags)

and their relations.

Output: The ranking vector f .

1 Form matrices H, De, Du, and W, having initialized the

hyperedge weights wi.

2 Compute the affinity matrix A ∈ R
|V |×|V |. Set the regular-

ization parameter ϑ and the query vector y ∈ R
|V |.

3 Find result ranking vector f ∈ R
|V | as in (4).

4 Optimize Eq.(6) to find the hyperedge weights as in (12).

5 Having found the new hyperedge weights, update Du and

W.

6 Repeat the steps 2−5 until convergence to find the final rank-

ing vector f .

Table 1. Dataset objects, notations, and counts.

Object Notation Count

Images Im 1292
Users U 440
User Groups Gr 1644
Geo-tags Geo 125
Tags Ta 2366

4. DATASET DESCRIPTION

For evaluation purposes, an image dataset was collected from

Flickr. It contains both indoor and outdoor medium sized photos of

popular Greek landmarks, including city scenes and landscapes. Us-

ing FlickrApi4, a large set of “geotagged” images was downloaded

along with valuable information related to them (id, title, owner, lat-

itude, longitude, tags, image views). Then, the dataset was filtered

based on image views (i.e., the times that the specific image has

been seen in Flickr) and owner’s uploading statistics. At this point,

it was assumed that images with many views normally depict worth

seeing landmarks and owners (users) with many uploaded images

were active ones, possessing many social relations (friends, social

groups). The image owners were the users in the dataset. Then, cor-

responding social information (friends, social groups) was crawled

and only the groups that had at least 5 owners from the dataset as

members were kept. The specific cardinalities are summarized in

Table 1.

In order to form a proper set of tags, all characters were con-

verted to lower case, unreadable symbols and redundant information

were removed. Next, a vocabulary of unique words was generated

along with their frequencies. Terms with frequency less than 2 oc-

currences were removed from the set of tags and the vocabulary. Fi-

nally, spelling mistakes were corrected and any morphological vari-

ations merged using the Edit Distance [17].

Having computed pairwise distances according to the “Haver-

sine formula”5, geo-tags were clustered into 125 distinct clusters us-

ing hierarchical clustering.

4http://www.flickr.com/services/api
5http://www.movable-type.co.uk/scripts/latlong.

html

Table 2. The structure of the hypergraph incidence matrix H and its

sub-matrices.

E(1) E(2) E(3) E(4) E(5) E(6)

0 0 ImE(3) ImE(4) ImE(5) ImE(6)

UE(1) UE(2) UE(3) UE(4) UE(5)
0

0 GrE(2)
0 0 0 0

0 0 0 GeoE(4)
0 0

0 0 0 0 TaE(5)
0

5. HYPERGRAPH CONSTRUCTION

The hypergraph structure is displayed in Table 2. The vertex set is

defined as V = Im∪U∪Gr∪Geo∪Ta. The incidence matrix of the

hypergraph H has size 5867×30924 elements. In the following, the

initial weights of the hyperedges are set equal to 1
n

, where n is the

volume of the hyperedges. The dataset has captured 2276 friendship

relations and 19127 tagging ones.

E(1) represents a pairwise friendship relation between users.

The incidence matrix of the hypergraph UE(1) has size 440× 2276
elements.

E(2) represents a user group. It contains all the vertices of the

corresponding users as well as the ones corresponding to the user

group. The incidence matrix of the hypergraph UE(2) − GrE(2)

has size (440 + 1644)× 1644 elements.

E(3) contains a user and an uploaded image, representing a user-

image possession relation. Each image has only one owner. The

incidence matrix of the hypergraph UE(3)−ImE(3) has size (440+
1292)× 1292 elements.

E(4) captures a geo-location relation. This hyperedge set con-

tains triplets of Im, U , and Geo. The incidence matrix of the hyper-

graph ImE(4)−UE(4)−GeoE(4) has size (1292+440+125)×125
elements.

E(5) also contains triplets, Im, U , and Ta. Each hyperedge rep-

resents a tagging relation. The incidence matrix of the hypergraph

ImE(5)−UE(5)−TaE(5) has size (1292+440+2366)×19127
elements.

E(6) contains pairs of vertices, which represent two images.

Both global and local features were used to determine visual rela-

tions between images. Firstly, the 100 nearest neighbors to each

image were identified using the GIST descriptors [18] and they were

reduced to the 5 most similar images to the reference image, by using

scale-invariant feature transform (SIFT) [19]. The incidence matrix

of the hypergraph ImE(6) has size 1292× 6460.

The query vector y is initialized by setting the entry correspond-

ing to the test image im and its owner o to 1. The tags ta connected

to this image are set equal to A(im, ta). The objects correspond-

ing to gr and geo associated to the image owner o are set equal

to A(o, gr) and A(o, geo), respectively. The query vector y has a

length of 5867 elements. During testing, the tags contained in the

test set were not included in the training procedure.

The ranking vector f∗ has the same size and structure as y. The

values corresponding to tags are used for image tagging with the top

ranked tags being recommended for the test image.

6. EXPERIMENTS

The averaged Recall-Precision, MAP , and F1 measure are used as

figures of merit. Precision is defined as the number of correctly rec-

ommended tags divided by the number of all recommended tags. Re-

call is defined as the number of correctly recommended tags divided
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by the number of all tags the user has actually set. The F1 measure

is the weighted harmonic mean of precision and recall, which mea-

sures the effectiveness of tagging when treating precision and recall

as equally important.

F1 = 2
Precision ·Recall

Precision+Recall
(13)

The MAP is the mean value of the Average Precision (AP ). The

AP is the average of precisions computed at the point of each cor-

rectly retrieved item:

AP =

∑Num
i Precision@i · truei

cNum
(14)

where Precision@i is the precision at ranking position i, Num is

the number of retrieved items, cNum is the number of correctly re-

trieved items, and truei = 1, if the item at position i is correctly

retrieved. Let us refer to the ranking obtained by the proposed ap-

proach as Image Tagging on Hypergraph with Hyperedge Weight

Estimation (ITH-HWE) and that obtained by (4) as Image Tagging

on Hypergraph (ITH). The ranking obtained by the approach in [7]

is denoted as HG-WE.

For evaluation purposes, a test set containing the 25% of the tags

and a training set containing the remaining 75% are defined. The re-

sults of the image tagging are demonstrated in Fig. 2, in which the

averaged Recall-Precision curves are plotted. These curves were ob-

tained by averaging the Recall-Precision curves over 1186 images

with at least 4 tags. To calculate the recall and precision, the 15 top

ranked tags are being recommended to any test image. In Fig.2, im-

age tagging on hypergraph was performed by initializing the hyper-

edge weights to 1
n

. It is demonstrated that by applying the hyperedge

weight learning scheme, tagging precision is improved considerably.

The ITH-HWE outperforms the ITH significantly, reaffirming the ef-

fectiveness of the proposed method. In this experiment, the HG-WE

fails to yield competitive results.

In Fig.3, image tagging was performed by initializing the hyper-

edge weights unequally, as in [3]. The results obtained by the ITH-

HWE outperform the other methods, reaffirming the superiority of

the ITH-HWE over both the ITH and the HG-WE. It is seen that the

initialization of the algorithm affects the image tagging results.
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Fig. 2. Averaged Recall-Precision curves for the ITH and ITH-

HWE.
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Fig. 3. Averaged Recall-Precision curves for the compared methods.

In Table 3, the averaged F1 measure at ranking positions 1,

2, 5, 10 and the MAP are listed for the ITH and the ITH-HWE.

Additional experiments were conducted on personalized image rec-

ommendation (IRH) and geo-referenced image recommendation

(GIRH), as were described in [20]. In all experiments, by employing

the ITH-HWE the results are significantly improved, validating the

merits of the proposed hyperedge weight learning scheme.

Table 3. MAP and F1 measure for the compared methods.

F1@1 F1@2 F1@5 F1@10 MAP

ITH 0.307 0.444 0.520 0.440 0.679
ITH-HWE 0.349 0.556 0.675 0.517 0.829
IRH 0.422 0.590 0.481 0.338 0.734
IRH-HWE 0.527 0.801 0.587 0.379 0.897
GIRH 0.301 0.434 0.448 0.390 0.609
GIRH-HWE 0.522 0.828 0.720 0.574 0.983

7. CONCLUSION AND FUTURE WORK

In this paper, an efficient hyperedge weight learning scheme has

been proposed. Image tagging has been addressed within a uni-

fied hypergraph learning framework, exploiting hypergraph struc-

ture multi-link relations. The experiments conducted on a collection

of images related to Greek sites have demonstrated the effective-

ness of the proposed method. Needless to say that the developed

framework can be accommodated in the tagging, retrieval, or recom-

mendation of any multimedia (e.g., music, video) or even the fusion

between them. The incremental update of an already trained hy-

pergraph learning model, reducing the O(|E|3) complexity of the

method, could be a topic of future research.
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