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ABSTRACT

This paper introduces a flip aware patch matching frame-
work that facilitates scalable sketch recognition. An
overlapping spatial grid is utilized to generate an ensem-
ble of patches for each sketch. We rank similarities be-
tween freely drawn sketches via a spatial voting process
where similar patches in terms of shape and structure
arbitrate for the result. Patch similarity is efficiently
estimated via the min-hash algorithm. A novel spatial
aware reverse index structure ensures the scalability of
our scheme. We show the benefits of horizontal flip
invariance and structural information in sketch recog-
nition and demonstrate state-of-the-art results in two
challenging sketch datasets.

1. INTRODUCTION

Machine understanding of everyday human activities and
actions consists a fundamental challenge for computer vi-
sion. Sketching to express feelings or elaborate on a topic
is a task dated to prehistoric times, yet it is still con-
temporary due to the outbreak of the touch screen tech-
nology. Sketch understanding requires little effort from
humans. Furthermore, neuroscience studies [1, 2, 3] have
shown that humans can decode complex natural scenes
from simple line drawings. Evidently, sketching is an
efficient and intuitive communication tool between hu-
mans. Human computer interaction could therefore ben-
efit from this expression channel given successful machine
interpretation of human sketches. Towards this direction
a large database of 20,000 free hand drawn sketches [4]
has motivated the study of how humans draw sketches.
Computational recognition of line drawings is a challeng-
ing task due to the abstract nature of sketching and the
inter and intra-class variations between drawings. More-
over, traditional object recognition techniques can not
be directly applied to the sketch domain as it is char-
acterized by lack of modalities such as color or texture.
Recent research [4, 5, 6], identified shape and structure
as key properties for robust sketch matching.

In this paper, we present a scalable sketch match-
ing approach based on shape and structure similarity.

Our algorithm generates a matching score between two
sketches by counting their local region correspondences.
We establish region correspondences based on similar
patches in terms of shape that are located in nearby po-
sitions. Min-hash, a set similarity estimation technique
originally applied to identify duplicate web pages [7] and
later modified for near duplicate image search [8], pro-
vides scalability in our scheme. Our method differs from
[8], where an image is described by a single set of min-
hash values. We extract a sequence of min-hash values
for each local patch and rely on a novel spatial aware
index scheme to enforce holistic structure affinity and
infer a ranking on the indexed sketches. The generated
ranking can be exploited for robust sketch recognition.
Furthermore, we propose a modification of our algorithm
invariant to reflection symmetry across the vertical axis
and we show that it can drastically improve recogni-
tion performance. We perform extensive experiments in
two challenging sketch datasets with various appearance
features and demonstrate state-of-the-art results in low
computational time.

2. RELATED WORK

Machine understanding of human drawn sketches is an
open issue for researchers and has been studied since the
primal era of computer evolution [9]. Early approaches
focused on sketch domains of structured nature, like dia-
gram recognition [10, 11, 12]. These approaches extract
simplistic stroke features and cannot cope with the com-
plexity of freely drawn sketches.

Advances in sketch based image retrieval [13, 14, 15]
identified histograms of oriented gradients as a pertinent
feature for the sketch domain. Supervised learning meth-
ods used a bag-of-features (BoF) [16, 14] representation
of these features for free hand sketch classification and
have shown promising results. BoF has been successful in
generic object recognition [17, 18]. One of its drawbacks
is the lack of spatial information in vector encoding. Re-
cent research [5, 6] demonstrated the benefits of struc-
tural information in sketch understanding. In [5], a star
graph model is employed to establish appearance and
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Fig. 1. Patch matching framework overview.

structure similarities between features. This approach
is computationally expensive as several distance evalu-
ations are carried out for each matched pair. In [6], a
sketch to sketch retrieval algorithm is suggested using a
spatial aware BoF variant to encode structure informa-
tion.

3. SKETCH MATCHING BASED ON PATCH
HASHING

In this section, we describe how we incorporate the
unification of patch location and description in a scal-
able framework for efficient sketch matching. We match
sketches based on accumulated shape similarities be-
tween local patches. Every sketch is divided into over-
lapping regions and for each region an appearance de-
scription is extracted. Min-hash is employed to estimate
the similarity between two patches. An overview of the
core modules of our method is presented in Figure 1.
A reverse index is built on the unique min-hash value-
location pairs pointing to the patches containing these
values. A new input sketch query undergoes the same
process and for each patch we look into the index to
retrieve similar patches at nearby locations. Every in-
dex hit contributes a vote to the corresponding indexed
sketch and the final ranking is generated by summing
the votes for each sample. The ranking can be used to
infer classification via the KNN algorithm.

3.1. Patch description

Feature extraction All sketches are scaled and cen-
tered inside a 256 × 256 canvas. An overlapping spatial
grid is applied to finely describe an input drawing and

feature vectors are extracted for every patch of the grid.
Sketches contain sparse visual information, therefore lo-
cal patches are adjusted to cover a large region of the
image. The patch size and grid size parameters regulate
how densely an image is sampled, controlling the detail
of representation. The patch extraction process is visual-
ized in the top part of Figure 1. Two patches are consid-
ered similar if they share shape characteristics, i.e. their
strokes have similar orientation histogram and spatial ar-
rangement. We suggest to quantify this similarity with
the HOG descriptor known to perform well in general
object detection problems. Moreover, descriptions rely-
ing on histograms of oriented gradients achieve superior
performance in sketch based image retrieval, according
to findings in literature [14, 15, 19, 20].

Binarization Descriptions extracted from the previ-
ous process return real valued histograms. In order to
make the descriptor vector compatible for use with the
min-hash algorithm, a binary representation is required.
We modify the HOG vector to abide to this scheme.
Without loss of crucial structure information we can bi-
narize the descriptor by setting the b% highest values to
1 and the rest to 0. The binarization process is tailored
to sketch matching as it highlights the strongest patch
orientations corresponding to solid continuous contours
while eliminating weak responses from noisy strokes. As
we assess similarity between many local patch pairs there
is no need for elaborate representations. This scheme
captures the local shape of the sketches and by combining
several local patch matches, it offers rich structure corre-
spondences. The binarization step can be performed in
linear time on the number of vector elements via a selec-
tion algorithm [21]. Finally, for each binarized descriptor
we calculate k s-tuples of min-hash values which will be
used to efficiently retrieve similar patches.

3.2. Location aware reverse index

To assess similarity between images one should count
how many common min-hash values exist between the
two patch collections. An appropriate data structure for
this purpose, that allows constant-time look-ups is a re-
verse index hash table.

We would like to encode spatial information into our
framework, hence we introduce spatial constraints in the
matching scheme. The idea is to discard matches be-
tween distant regions. In other words, a successful match
is defined between two patches that are visually similar
and approximately located at nearby sketch regions. We
propose a key-location-index structure index built on the
collection of the database extracted min-hash sketches.
An index key is defined for each unique min-hash tu-
ple/location combination. For each key, we store the id
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of the image a given patch originates from. The location
information can be capitalized during the query process
by rejecting non adjacent patches.

3.3. Horizontal flip matching through spatial
voting

Images similar to a sketch query are returned based on a
voting process (bottom of Figure 1). The pipeline of the
query step is as follows: given a binary drawing, features
are extracted according to the process illustrated in fea-
ture extraction paragraph. For every patch, k min-hash
sketches are computed and for each sketch a look-up in
the key-location-index is performed. If the key is found
in the reverse index, we iterate through the entries and
add a vote to the corresponding images. The locality
constraint is enforced by discarding patches located fur-
ther than a predefined distance radius r from the current
examined patch. The location information is embedded
in the hash key and a successful look-up in the table re-
turns, in constant time, all the images that contain visu-
ally similar patches at the same location as the examined
patch. In order to expand the spatial search radius r, we
can generate key-location queries for each patch by fix-
ing the key and inserting nearby location coordinates to
check. An indexed image T is represented by a collec-
tion T of key-location values. A given key-location value
v scores a hit on T if v ∈ T .

s(Q, T ) =
∑
v∈Q

hit(v, T ). hit(v, T ) =

{
1, if v ∈ T
0, otherwise

(1)
where v is a key-location hash value and Q, T collections
of key-location values. The final ranking is generated
by counting the votes cast to each indexed sketch and
sorting them in descending order. Classification can be
achieved via the the KNN rule on the generated ranking.
As in [5], category filtering can be applied via a learning
algorithm before classification to narrow down complex-
ity and improve recognition accuracy. In this paper, we
apply category filtering via the SVM algorithm and keep
the top N returned categories.

We observe in the large collection of hand drawn
sketches of [4], the presence of reflection symmetry across
the vertical axis between sketch pairs of the same cate-
gory. We make our patching framework flip invariant
across the vertical axis by generating a new horizontal
flipped sketch Qflipped for each new query Q and match
both versions against the database. We keep the highest
score among the two versions for each indexed exemplar.

s(f)(Q, T ) = max{score(Q, T ), score(Qflipped, T )} (2)

The suggested patch based matching scheme en-
hances flexibility since look-ups take place only for

patches that have been drawn by the user, efficiently
reducing query time and facilitating real time result up-
dating when a new stroke is drawn. The ranking routine
can be easily parallelized to enhance scalability even
further.

4. EXPERIMENTS

4.1. Datasets and experimental setup

Datasets The evaluation is carried out in two challeng-
ing sketch datasets. The TU-Berlin [4] database consists
of 20,000 hand-drawn sketches. It incorporates 250 ob-
ject categories with each category being represented by
80 sketches. As the sketches are freely drawn by humans
the dataset exhibits high variance over the categories.
Humans recognize on average 73.1% of all sketches cor-
rectly. We also use the query set of the Flickr15k bench-
mark [15] as a second evaluation dataset. In total, there
are 33 sketch categories describing shape, building land-
marks, objects and scenes. Each category is represented
by 10 sketches and some categories display high visual
overlap.

Features and settings The HOG algorithm is se-
lected to describe local patch appearances. We found
that the min-hash parameters k and s have little effect
on performance, hence we fix them to k = 50 and s = 2.
We also globally fix the binarization threshold to top
20% of the vector values. At the voting stage we use the
Manhattan distance and set the corresponding threshold
to r = 4. For the KNN classification of the rankings
we use K values {1, 3, 5, 7, 9} and report the best score.
Finally, category filtering is performed with SVM and
we keep the top 5 categories in TU-Berlin and top 2 in
Flickr15k. In the rest of this section, we denote as PH-
HOG the patch hashing method with the corresponding
descriptors. We prefix the category filtered results with
the SVM keyword and suffix the flip invariant methods
with the flip keyword.

Alternative methods We compare our algorithm
against recent structured based techniques that demon-
strated state-of-the-art results in the TU-Berlin dataset.
Namely the star-graph model of Yi et al. [5] and the
PHOG-A [6] algorithm. Additionally, we include com-
parisons against the baseline KNN and SVM methods
in both datasets, built with the HOG features.

Metrics Following [5], we perform 4-fold cross vali-
dation on TU-Berlin dataset and 5-fold on Flickr15k.
We measure the recognition accuracy on both datasets
and additionally measure the Cumulative Matching Ac-
curacy (CMA) and the Cumulative Best Matching Ac-
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Table 1. Sketch recognition accuracy comparison.
TU-Berlin Flickr15k

Method Unsupervised Supervised Unsupervised Supervised
KNN 45% [4] N/A 57.2%± 3.7 N/A
SVM N/A 56% [4] N/A 76.9%± 3.6
Yi et al. [5] 53.3% 61.5% N/A N/A
PH-HOG 56.2%± 0.2 61.4%± 0.3 74.2%± 1.8 77.4%± 3.6
PH-HOG-flip 58.5%± 0.2 62.8%± 0.2 75.7%± 2.8 77.8%± 4.7
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Fig. 2. Rank n CMA and CBMA curves in the TU-Berlin sketch data set. (Best viewed in color)

curacy (CBMA) in the TU-Berlin dataset. CMA shows
how often the correct category appears in top n retrieved
sketches, while CBMA measures the correctly retrieved
sketches that account for the most of the top n retrieved
sketches.

4.2. Discussion

Table 1 summarizes recognition accuracy over the two
datasets. The category filtered (supervised) SVM-PH-
HOG-flip algorithm achieves a new state-of-the-art score
of 62.8% in the challenging TU-Berlin dataset. We also
note that the unsupervised PH-HOG-flip outperforms
the SVM and the unsupervised star-graph model by
a large margin. Both our method and [5] are based
on structured features. We attribute the superiority
of patch hashing to the robust matching between lo-
cal patches via the spatial voting and the binarization
process that highlights the major patch orientations.
Moreover, we verify that horizontal flip invariance im-
proves the overall performance, as finer sketch matches
are discovered. Results on the Flickr15k dataset are
coherent with the findings on TU-Berlin, although the
impact of flip invariance is less due to the low number
of samples per category that leads to limited reflection

variations within each class.

We further evaluate PH-HOG in the TU-Berlin
dataset using the CMA and CBMA curves. The last
20 sketches of each category are used as queries. We
compare patch hashing against Ma et al. [6] which
has been especially developed for sketch retrieval. KNN
classification [4] is also included in the evaluation as base-
line. Figure 2 displays the curves. SVM-PH-HOG-flip
achieves superior performance in both cases and main-
tains the edge over all ranks. Once more, flip invariance
contributes to more robust results.

5. CONCLUSIONS

We presented a robust and scalable sketch recognition
technique. Appearance and structure information is ex-
tracted from a sketch and captured in a spatial aware
hash table. A binarization process further enhances
strong continuous contours and facilitates the application
of min-hash algorithm. We highlighted the significance
of horizontal flip invariance in sketch recognition. State-
of-the-art results were demonstrated in two challenging
sketch datasets indicating the matching accuracy of our
method and its benefits against competitive algorithms.
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