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ABSTRACT 
 
Deep convolutional neural networks have shown promising 
results in image and speech recognition applications. The 
learning capability of the network improves with increasing 
depth and size of each layer. However this capability comes 
at the cost of increased computational complexity. Thus 
reduction in hardware complexity and faster classification 
are highly desired. This work proposes an optimization 
method for fixed point deep convolutional neural networks. 
The parameters of a pre-trained high precision network are 
first directly quantized using L2 error minimization. We 
quantize each layer one by one, while other layers keep 
computation with high precision, to know the layer-wise 
sensitivity on word-length reduction. Then the network is 
retrained with quantized weights. Two examples on object 
recognition, MNIST and CIFAR-10, are presented. Our 
results indicate that quantization induces sparsity in the 
network which reduces the effective number of network 
parameters and improves generalization. This work reduces 
the required memory storage by a factor of 1/10 and 
achieves better classification results than the high precision 
networks. 
 

Index Terms— convolutional neural network, 
quantization, word length optimization, sparsity 
 

1. INTRODUCTION 
 
Convolutional neural network (CNN) is a neuromorphic 
computational model inspired from mammal’s brain. The 
main inspiration comes from Hubel and Wiesel’s work. 
Experiments on monkeys revealed that the visual area 
contains two types of cells: simple cells responsible for 
feature extraction and complex cells combining these 
features locally [1]. Yann Lecun et al. developed 

handwritten digit recognition CNN called LeNet-5 [2]. A 
sample CNN network is depicted in Fig. 1. CNN has three 
types of layers: convolution, pooling and fully connected 
DNN layers. Convolution layers exhibit local connectivity 
and weights sharing. The pooling layer performs 
subsampling on k x k (e.g., k = 2) region from the preceding 
layer. The operation can be average, max or stochastic 
pooling [2] [3] [4]. Conceptually CNN can be divided into 
two parts. The frontal part learns useful features for 
classification while the rear part consists of a multilayer 
fully connected deep neural network (DNN).  

CNN is widely used for handwritten digit recognition [2] 
and general object recognition [5] [6] [7]. Alex et al. used 
CNN to classify 10, 100 and 1000 objects [5] [6]. They used 
a big network with 8K convolution connections. Network 
parameters have 32-bit floating point (single) precision. 
Therefore reducing the word length is highly desired, 
especially for VLSI implementation.  

In the literature, fixed point implementations of neural 
networks have been studied. A quantized feed forward deep 
neural network is introduced in [8] and [9]. However CNN 

 
Fig. 1. Convolutional neural network with eight layers.  The 
prefix “C”, “S” and “F” stands for convolution, subsampling 
and classifier layers respectively. Layers C1 to C5 and C5 to F7 
constitute the frontal feature extraction and classifier parts 
respectively. The proposed work represents the depicted 
architecture with a string of 1-2-2-4-4-5-4-2 where each 
number denotes the count of feature maps in that layer.  
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has more diverse layer types and hence quantization is more 
challenging. The work of [10] uses a directly quantized 
CNN. However it does not provide a retraining mechanism 
with low precision weights. 

The proposed work has two important contributions. We 
provide a training mechanism with quantized weights which 
reduces the cost of VLSI hardware implementation. Weights 
with floating point precision are reduced to 3 and 4-bit 
precision, which yields more than 80% savings. Secondly we 
achieve better classification results than the high precision 
weights. This is due to quantization which induces sparsity 
in the network. One of the well-known remedy for reducing 
overfitting and improving generalization is “dropout” [11]. 
However the same work states two facts about dropout 
effectiveness for CNN. An important consequence of the 
convolutional shared-filter architecture is a drastic reduction 
in the number of parameters relative to a neural net in which 
all neurons apply different filters. This reduces the net’s 
representational capacity, but it also reduces its capacity to 
overfit, so dropout is far less advantageous in convolutional 
layers [11].  The proposed work shows that quantizing the 
network to reduced world length resets 17.3% of network 
parameters to zero. When we only analyze the convolution 
layers, 19.2% parameters of the convolution layers are reset 
to zero. This leads to regularization impact on the network, 
which results in faster processing and better generalization. 

The rest of the paper is organized as follows. Section 2 
presents direct quantization and L2 error minimization. 
Section 3 explains network retraining with quantized 
weights. Experimental results are provided in Section 4. 
Finally Section 5 concludes the work. 
 

2. DIRECT QUANTIZATION AND LAYER-WISE 
SENSITIVITY ANALYSIS 

 
The proposed work divides a network into layer-wise signal 
groups for quantization [12]. Biases and subsampling layer 
parameters are kept in high precision. Throughout this 
article, high precision refers to single precision floating 
point. Each convolution kernel is treated independently and 

has its own quantization step size. For example, if the first 
convolution layer has 1x6 feature maps and 5x5 receptive 
field, then we have 6 convolutions in total. Each convolution 
operation shares a single quantization step size among 5x5 = 
25 weights. However each fully connected rear end layer has 
one quantization step size. In uniform quantization, the 
network is quantized with the same number of quantization 
levels for all layers. However our sensitivity analysis shows 
that better savings can be obtained with layer-specific 
quantization levels. 
  
2.1. L2 error minimization 
 
The L2 error minimization quantizes weights with an 
optimum quantization step size. The L2 error minimization 
criterion is the same as reported in [9] and listing 1. The 
approach is similar to Lloyd-Max quantization except that 
the quantizer is uniform. Q(x) represents the quantization 
function, ∆ shows the quantization step size, M represents 
the number of quantization levels and z shows integer 
membership. The iterative L2 error minimization procedure 
is outlined in Eq. (1) to (7). This algorithm yields quite 

 
Fig. 2. Layer wise sensitivity analysis. The y-axis represents the 
network MSE on the training set while the x-axis represents M 
quantization levels. The plot shows that rear layers are more 
sensitive to quantization noise than convolution layers. 

 
Table 1 Direct quantization results (MNIST) 

Convolution Layers 
(M Levels) 

Rear Layers  
(M Levels) Test Set 

MCR (%) C1 C3 C5 F6 F7 
3 5 5 7 31 1.68 

1.73 5 
7 

5 5 15 31 
7 7 15 31 1.10 

7 7 7 15 255 1.02 
 

 
Listing 1. Quantization with L2 error minimization  
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accurate quantization step size for convolution layers. 
However, for the rear layers, we apply a heuristic search for 
determining the optimum quantization step size. This search 
is centered on the initial step size obtained from Eq. (1) to 
(7). Results with direct quantization are reported in Table 1. 
The corresponding floating point misclassification rate 
(MCR) is 0.81%. We can find that miss classification rates 
with directly quantized network are not good. The network 
performance can be improved with retraining.  
 
2.2. Layer wise sensitivity analysis for non-uniform 
quantization 
 
Uniform quantization means applying the same value of M 
to all layers, Mconv = Mrear. In order to squeeze the full 
benefits of quantized network, we conduct quantization 
sensitivity analysis for all convolution and rear layers. The 
pooling layers are excluded as these are kept in high 
precision. The sensitivity analysis procedure for a general 
signal processing system is outlined in [12]. The sensitivity 
analysis helps in computing the optimum value of M for 
each layer. We quantize one layer and keep the other layers 
in high precision. This process is conducted one by one for 
all the layers. The sensitivity analysis plot is shown in Fig. 2. 
The analysis is conducted for M = 3, 5… 31. Note that M of 
31 corresponds to 5 bits quantization. The mean square error 
(MSE) on training set is recorded when the network 
converges. Figure 2 shows that the weights between the 
penultimate and final layer, rearlayer7 are most sensitive to 
quantization. This is due to the addition of quantization 
noise closer to the network output. In our remaining 

experiments we keep this layer with 5 or 8 bit precision. 
Rearlayer6 is the second most sensitive layer and we keep it 
with 4-bit precision. Convolution layers are proved to be 
robust to quantization and are kept in 3 bit precision. The 
next section discusses the retraining mechanism with 
quantized weights. 

 
3. NETWORK RETRAINING 

 
Direct quantization reduces the word length at the cost of 
degraded performance. Therefore retraining is desired to 
improve classification. As the theory of error back 
propagation [13] is well known, we focus here on explaining 
error back propagation in the context of our quantization 
framework. During training we keep parameters in both high 
and low precision. We set aside 5000 training samples for 
validation. This set is used to decide the network 
convergence criterion. We start with a high precision pre 
trained network and obtain a quantized network using L2 
error minimization. Then the inputs are fed forward via the 
network with the low precision weights. This way the output 
error is indirectly driven by the quantization process. The 
output error is back propagated via low precision weights. 
The computed change in weights is added to the high 
precision weights. Thus we obtain new high precision 
weights. This process is iterated for several mini-batches and 
epochs. During training the selection of mini-batch size is 
important. Generally CNN employs the stochastic gradient 
descent (SGD) algorithm, where conventionally the mini-
batch size is one and weights are updated after each sample. 
This is quite noisy but helps CNN to avoid trapping in local 
optimums. Reducing the word length is also noisy due to 
quantization. Our simulations show that when these two 
noises add up, convergence is very slow. Therefore the batch 
size selection is important. Our experiments show that the 
mini batch size of 50 is a good choice.  

Table 2 shows a layer wise distribution of weights after 
undergoing non-uniform quantization and retraining. This 
network achieves 0.81% MCR on test set with high 
precision weights. After retraining with quantization, 17% 
weights are set to zero. The network achieves 0.84% MCR 
with low precision weights.  Further it is evident that on the 
average more sparsity is induced in the rear layers compared 
to convolution layers. Each convolution kernel shares one 
quantization step size. Due to fewer parameters in the 

Table 2 Layer wise network parameters distribution pre and post quantization (MNIST) 

Layers Convolution layers Rear end NN layers 
Overall C1 C3 C5 F6 F7 

M Quantization Levels 7 7 7 15 31 
Per layer weights count 150 2400 48000 10080 840 61470 

Zeroed Weights 
Pre Quantization 0 2 47 10 2 61 
Post Quantization 29 496 8477 1346 314 10662 

Percentage (%) 19.3 20.6 17.6 13.3 37.1 17.3 
 

 
 

 

 

 

 

Fig. 3. Network retraining with quantized weights 

1. Obtain quantized 
weights from high 
precision weights 

2. Feed forward with 
quantized weights and 
compute output error 

3. Back propagate the error gradients 
with quantized weights and update 
the high precision weights  
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convolution operation, the induced sparsity is lesser than the 
rear layers. 
 

4. EXPERIMENTAL RESULTS 
 
Our simulations consist of thousands of epochs of runs and 
huge networks. It is therefore very time consuming to train 
the network on CPU. We implemented a highly parallel 
CUDA based GPU program. Convolution involves 
accessing each location 25 times for 5x5 masks. We 
therefore map each convolution operation to a single thread 
block. This resulted in better utilization of shared memory as 
a cache. Secondly global memory contents are copied to 
shared memory in a coalesced fashion. During back 
propagation of error gradients, we pull the gradients instead 
of push, which results in better memory access [14]. We 
obtain two orders of (> 100 times) faster processing 
compared to single core CPU implementations on big 
networks (CIFAR-10 network). Our results consider max 
pooling [3]. We do not conduct experiments with average 
pooling not only because max pooling is superior to average 
pooling but also max pooling does not involve bias and 
weight. The learning rate starts at 0.01 and is decremented 
after each epoch by multiplying with 0.98.  
 
4.1. Handwritten digit recognition (MNIST) 
 
MNIST is a handwritten digit recognition dataset consisting 
of 60,000 training and 10,000 test samples. Each sample has 
32x32 resolutions and is gray scale. We experiment with 
CNN architecture having 1-6-6-16-16-120-84-10 layer wise 
feature maps. We train the network with rectified linear units 
(ReLUs). Table 3 shows the classification results. We can 
find that higher precision for the rear layer results in better 
classification. The quantized network performs better, 
similar or comparable classification with only 10% memory 
space consumption. Signal quantization reduces the required 
hardware but slightly increases the misclassification rate. All 
results are obtained using 2x2 max pooling. 
 
4.2. CIFAR-10 object recognition 
 
We also evaluate the quantized network on a general object 
recognition dataset, CIFAR-10 [5]. This dataset consists of 

ten classes: airplane, automobile, bird, cat, deer, dog, frog, 
horse, ship and truck. The training set consists of 50,000 
RGB samples. Test set contains 10,000 samples. Each 
sample has 32x32 resolution. We experiment with the CNN 
network having 3-64-64-64-64-64-184-10 feature maps. 
This is a big network and incorporates more than 8K 
convolution connections. This network architecture has 
similarity to the one reported in [15]. However our 
simulations do not consider response normalization layers, 
overlapped pooling and other optimizations. Before training 
starts, we preprocess the training samples. The mean activity 
over the training set is subtracted from each pixel [6]. This is 
to account for variations in illumination. This is done for 
each channel. We train the network with rectified linear 
units and max pooling. The high precision network achieves 
33.95% MCR on the test set. The quantized network with 
MC1/C2/C3 = 7, MF6 = 31 and MF7 = 255 obtains test set MCR 
of 33.34%.  
 

5. CONCLUSION 
 
This work provides a training mechanism with quantized 
weights. The resulting network can perform accurate 
classification with reduced word length. Further the induced 
sparsity helps the network to generalize well. The proposed 
work is good for efficient hardware and software 
implementations. 
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