
FIXED POINT OPTIMIZATION OF DEEP CONVOLUTIONAL
NEURAL NETWORKS FOR OBJECT RECOGNITION

Sajid Anwar, Kyuyeon Hwang and Wonyong Sung

Department of Electrical and Computer Engineering

Seoul National University
Seoul 151-744 South Korea

Email: sajid@dsp.snu.ac.kr, khwang@dsp.snu.ac.kr, wysung@snu.ac.kr

ABSTRACT

Deep convolutional neural networks have shown promising
results in image and speech recognition applications. The
learning capability of the network improves with increasing
depth and size of each layer. However this capability comes
at the cost of increased computational complexity. Thus
reduction in hardware complexity and faster classification
are highly desired. This work proposes an optimization
method for fixed point deep convolutional neural networks.
The parameters of a pre-trained high precision network are
first directly quantized using L2 error minimization. We
quantize each layer one by one, while other layers keep
computation with high precision, to know the layer-wise
sensitivity on word-length reduction. Then the network is
retrained with quantized weights. Two examples on object
recognition, MNIST and CIFAR-10, are presented. Our
results indicate that quantization induces sparsity in the
network which reduces the effective number of network
parameters and improves generalization. This work reduces
the required memory storage by a factor of 1/10 and
achieves better classification results than the high precision
networks.

Index Terms— convolutional neural network,
quantization, word length optimization, sparsity

1. INTRODUCTION

Convolutional neural network (CNN) is a neuromorphic
computational model inspired from mammal’s brain. The
main inspiration comes from Hubel and Wiesel’s work.
Experiments on monkeys revealed that the visual area
contains two types of cells: simple cells responsible for
feature extraction and complex cells combining these
features locally [1]. Yann Lecun et al. developed

handwritten digit recognition CNN called LeNet-5 [2]. A
sample CNN network is depicted in Fig. 1. CNN has three
types of layers: convolution, pooling and fully connected
DNN layers. Convolution layers exhibit local connectivity
and weights sharing. The pooling layer performs
subsampling on k x k (e.g., k = 2) region from the preceding
layer. The operation can be average, max or stochastic
pooling [2] [3] [4]. Conceptually CNN can be divided into
two parts. The frontal part learns useful features for
classification while the rear part consists of a multilayer
fully connected deep neural network (DNN).

CNN is widely used for handwritten digit recognition [2]
and general object recognition [5] [6] [7]. Alex et al. used
CNN to classify 10, 100 and 1000 objects [5] [6]. They used
a big network with 8K convolution connections. Network
parameters have 32-bit floating point (single) precision.
Therefore reducing the word length is highly desired,
especially for VLSI implementation.

In the literature, fixed point implementations of neural
networks have been studied. A quantized feed forward deep
neural network is introduced in [8] and [9]. However CNN

Fig. 1. Convolutional neural network with eight layers. The
prefix “C”, “S” and “F” stands for convolution, subsampling
and classifier layers respectively. Layers C1 to C5 and C5 to F7
constitute the frontal feature extraction and classifier parts
respectively. The proposed work represents the depicted
architecture with a string of 1-2-2-4-4-5-4-2 where each
number denotes the count of feature maps in that layer.

This work was supported in part by the Brain Korea 21 Plus Project

and the National Research Foundation of Korea (NRF) grants funded by
the Ministry of Education, Science and Technology (MEST), Republic
of Korea (No. 2012R1A2A2A06047297).

1131978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

has more diverse layer types and hence quantization is more
challenging. The work of [10] uses a directly quantized
CNN. However it does not provide a retraining mechanism
with low precision weights.

The proposed work has two important contributions. We
provide a training mechanism with quantized weights which
reduces the cost of VLSI hardware implementation. Weights
with floating point precision are reduced to 3 and 4-bit
precision, which yields more than 80% savings. Secondly we
achieve better classification results than the high precision
weights. This is due to quantization which induces sparsity
in the network. One of the well-known remedy for reducing
overfitting and improving generalization is “dropout” [11].
However the same work states two facts about dropout
effectiveness for CNN. An important consequence of the
convolutional shared-filter architecture is a drastic reduction
in the number of parameters relative to a neural net in which
all neurons apply different filters. This reduces the net’s
representational capacity, but it also reduces its capacity to
overfit, so dropout is far less advantageous in convolutional
layers [11]. The proposed work shows that quantizing the
network to reduced world length resets 17.3% of network
parameters to zero. When we only analyze the convolution
layers, 19.2% parameters of the convolution layers are reset
to zero. This leads to regularization impact on the network,
which results in faster processing and better generalization.

The rest of the paper is organized as follows. Section 2
presents direct quantization and L2 error minimization.
Section 3 explains network retraining with quantized
weights. Experimental results are provided in Section 4.
Finally Section 5 concludes the work.

2. DIRECT QUANTIZATION AND LAYER-WISE
SENSITIVITY ANALYSIS

The proposed work divides a network into layer-wise signal
groups for quantization [12]. Biases and subsampling layer
parameters are kept in high precision. Throughout this
article, high precision refers to single precision floating
point. Each convolution kernel is treated independently and

has its own quantization step size. For example, if the first
convolution layer has 1x6 feature maps and 5x5 receptive
field, then we have 6 convolutions in total. Each convolution
operation shares a single quantization step size among 5x5 =
25 weights. However each fully connected rear end layer has
one quantization step size. In uniform quantization, the
network is quantized with the same number of quantization
levels for all layers. However our sensitivity analysis shows
that better savings can be obtained with layer-specific
quantization levels.

2.1. L2 error minimization

The L2 error minimization quantizes weights with an
optimum quantization step size. The L2 error minimization
criterion is the same as reported in [9] and listing 1. The
approach is similar to Lloyd-Max quantization except that
the quantizer is uniform. Q(x) represents the quantization
function, ∆ shows the quantization step size, M represents
the number of quantization levels and z shows integer
membership. The iterative L2 error minimization procedure
is outlined in Eq. (1) to (7). This algorithm yields quite

Fig. 2. Layer wise sensitivity analysis. The y-axis represents the
network MSE on the training set while the x-axis represents M
quantization levels. The plot shows that rear layers are more
sensitive to quantization noise than convolution layers.

Table 1 Direct quantization results (MNIST)

Convolution Layers
(M Levels)

Rear Layers
(M Levels) Test Set

MCR (%) C1 C3 C5 F6 F7
3 5 5 7 31 1.68

1.73 5
7

5 5 15 31
7 7 15 31 1.10

7 7 7 15 255 1.02

Listing 1. Quantization with L2 error minimization

1132

accurate quantization step size for convolution layers.
However, for the rear layers, we apply a heuristic search for
determining the optimum quantization step size. This search
is centered on the initial step size obtained from Eq. (1) to
(7). Results with direct quantization are reported in Table 1.
The corresponding floating point misclassification rate
(MCR) is 0.81%. We can find that miss classification rates
with directly quantized network are not good. The network
performance can be improved with retraining.

2.2. Layer wise sensitivity analysis for non-uniform
quantization

Uniform quantization means applying the same value of M
to all layers, Mconv = Mrear. In order to squeeze the full
benefits of quantized network, we conduct quantization
sensitivity analysis for all convolution and rear layers. The
pooling layers are excluded as these are kept in high
precision. The sensitivity analysis procedure for a general
signal processing system is outlined in [12]. The sensitivity
analysis helps in computing the optimum value of M for
each layer. We quantize one layer and keep the other layers
in high precision. This process is conducted one by one for
all the layers. The sensitivity analysis plot is shown in Fig. 2.
The analysis is conducted for M = 3, 5… 31. Note that M of
31 corresponds to 5 bits quantization. The mean square error
(MSE) on training set is recorded when the network
converges. Figure 2 shows that the weights between the
penultimate and final layer, rearlayer7 are most sensitive to
quantization. This is due to the addition of quantization
noise closer to the network output. In our remaining

experiments we keep this layer with 5 or 8 bit precision.
Rearlayer6 is the second most sensitive layer and we keep it
with 4-bit precision. Convolution layers are proved to be
robust to quantization and are kept in 3 bit precision. The
next section discusses the retraining mechanism with
quantized weights.

3. NETWORK RETRAINING

Direct quantization reduces the word length at the cost of
degraded performance. Therefore retraining is desired to
improve classification. As the theory of error back
propagation [13] is well known, we focus here on explaining
error back propagation in the context of our quantization
framework. During training we keep parameters in both high
and low precision. We set aside 5000 training samples for
validation. This set is used to decide the network
convergence criterion. We start with a high precision pre
trained network and obtain a quantized network using L2
error minimization. Then the inputs are fed forward via the
network with the low precision weights. This way the output
error is indirectly driven by the quantization process. The
output error is back propagated via low precision weights.
The computed change in weights is added to the high
precision weights. Thus we obtain new high precision
weights. This process is iterated for several mini-batches and
epochs. During training the selection of mini-batch size is
important. Generally CNN employs the stochastic gradient
descent (SGD) algorithm, where conventionally the mini-
batch size is one and weights are updated after each sample.
This is quite noisy but helps CNN to avoid trapping in local
optimums. Reducing the word length is also noisy due to
quantization. Our simulations show that when these two
noises add up, convergence is very slow. Therefore the batch
size selection is important. Our experiments show that the
mini batch size of 50 is a good choice.

Table 2 shows a layer wise distribution of weights after
undergoing non-uniform quantization and retraining. This
network achieves 0.81% MCR on test set with high
precision weights. After retraining with quantization, 17%
weights are set to zero. The network achieves 0.84% MCR
with low precision weights. Further it is evident that on the
average more sparsity is induced in the rear layers compared
to convolution layers. Each convolution kernel shares one
quantization step size. Due to fewer parameters in the

Table 2 Layer wise network parameters distribution pre and post quantization (MNIST)

Layers Convolution layers Rear end NN layers
Overall C1 C3 C5 F6 F7

M Quantization Levels 7 7 7 15 31
Per layer weights count 150 2400 48000 10080 840 61470

Zeroed Weights
Pre Quantization 0 2 47 10 2 61
Post Quantization 29 496 8477 1346 314 10662

Percentage (%) 19.3 20.6 17.6 13.3 37.1 17.3

Fig. 3. Network retraining with quantized weights

1. Obtain quantized
weights from high
precision weights

2. Feed forward with
quantized weights and
compute output error

3. Back propagate the error gradients
with quantized weights and update
the high precision weights

1133

convolution operation, the induced sparsity is lesser than the
rear layers.

4. EXPERIMENTAL RESULTS

Our simulations consist of thousands of epochs of runs and
huge networks. It is therefore very time consuming to train
the network on CPU. We implemented a highly parallel
CUDA based GPU program. Convolution involves
accessing each location 25 times for 5x5 masks. We
therefore map each convolution operation to a single thread
block. This resulted in better utilization of shared memory as
a cache. Secondly global memory contents are copied to
shared memory in a coalesced fashion. During back
propagation of error gradients, we pull the gradients instead
of push, which results in better memory access [14]. We
obtain two orders of (> 100 times) faster processing
compared to single core CPU implementations on big
networks (CIFAR-10 network). Our results consider max
pooling [3]. We do not conduct experiments with average
pooling not only because max pooling is superior to average
pooling but also max pooling does not involve bias and
weight. The learning rate starts at 0.01 and is decremented
after each epoch by multiplying with 0.98.

4.1. Handwritten digit recognition (MNIST)

MNIST is a handwritten digit recognition dataset consisting
of 60,000 training and 10,000 test samples. Each sample has
32x32 resolutions and is gray scale. We experiment with
CNN architecture having 1-6-6-16-16-120-84-10 layer wise
feature maps. We train the network with rectified linear units
(ReLUs). Table 3 shows the classification results. We can
find that higher precision for the rear layer results in better
classification. The quantized network performs better,
similar or comparable classification with only 10% memory
space consumption. Signal quantization reduces the required
hardware but slightly increases the misclassification rate. All
results are obtained using 2x2 max pooling.

4.2. CIFAR-10 object recognition

We also evaluate the quantized network on a general object
recognition dataset, CIFAR-10 [5]. This dataset consists of

ten classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship and truck. The training set consists of 50,000
RGB samples. Test set contains 10,000 samples. Each
sample has 32x32 resolution. We experiment with the CNN
network having 3-64-64-64-64-64-184-10 feature maps.
This is a big network and incorporates more than 8K
convolution connections. This network architecture has
similarity to the one reported in [15]. However our
simulations do not consider response normalization layers,
overlapped pooling and other optimizations. Before training
starts, we preprocess the training samples. The mean activity
over the training set is subtracted from each pixel [6]. This is
to account for variations in illumination. This is done for
each channel. We train the network with rectified linear
units and max pooling. The high precision network achieves
33.95% MCR on the test set. The quantized network with
MC1/C2/C3 = 7, MF6 = 31 and MF7 = 255 obtains test set MCR
of 33.34%.

5. CONCLUSION

This work provides a training mechanism with quantized
weights. The resulting network can perform accurate
classification with reduced word length. Further the induced
sparsity helps the network to generalize well. The proposed
work is good for efficient hardware and software
implementations.

7. REFERENCES

[1] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional
architecture of monkey striate cortex,” The Journal of Physiology,
vol. 195, no. 1, pp. 215-243, 1968.
[2] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ”Gradient-
based learning applied to document recognition,” in Proc. of the
IEEE, vol. 86, no. 11, pp. 2278- 2324, 1998.
[3] D. Scherer, A. Muller and S. Behnke, “Evaluation of pooling
operations in convolutional architectures for object recognition,”
in International Conference on Artificial Neural Networks, 2010,
pp. 92-101, 2010.
[4] M. D. Zeiler and R. Fergus, “Stochastic pooling for
regularization of deep convolutional neural networks,” arXiv
preprint arXiv: 1301.3557, 2013.

Table 3 Retrained quantized network (MNIST)
Signal Quantization

(bits)
Quantization Levels, M Test set

MCR (%) C1 C3 C5 F6 F7

5
7 7 7 15 15 0.92
7 7 7 15 31 0.88
7 7 7 15 255 0.89

8
7 7 7 15 15 0.91
7 7 7 15 31 0.88
7 7 7 15 255 0.91

32 7 7 7 15 31 0.84
7 7 7 15 255 0.77

1134

[5] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Master’s thesis, Department of Computer Science,
University of Toronto, 2009.
[6] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in Proc.
of the Advances in Neural Information Processing Systems, 2012.
[7] S. L. Phung and A. Bouzerdoum, “MATLAB library for
convolutional neural network,” Technical Report.
[8] J. Kim, K. Hwang, and W. Sung, “x1000 real-time phoneme
recognition, VLSI using feed-forward deep neural networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on, IEEE, pp. 7510-7514, 2014.
[9] K. Hwang and W. Sung, “Fixed-point feed forward deep neural
network design using weights +1, 0 and -1”, in Signal Processing
Systems (SiPS), 2014 IEEE workshop on, IEEE 2014.
[10] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. Lecun and E.
Culurciello, “Hardware accelerated convolutional neural networks
for synthetic vision systems,” in Circuits and Systems (ISCAS),
Proc. of IEEE International Symposium on. IEEE, pp. 257-260,
2010.
[11] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and
R. R. Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” arXiv preprint arXiv:
1207.0580, 2012.
[12] W. Sung and K.-I. Kum, “Simulation-based word-length
optimization method for fixed-point digital signal processing
systems,” Signal Processing, IEEE Transactions on, vol. 43, no.
12, pp. 3087–3090, 1995.
[13] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning
representations by back-propagating errors,” in Letters to Nature,
vol. 323, pp. 533-536, 1986.
 [14] P. Y. Simard, D. Steinkraus and J. C. Platt, “Best practices
for convolutional neural networks applied to visual document
analysis,” in Document Analysis and Recognition (ICDAR), 2003
IEEE International Conference on. IEEE, pp. 958-963, 2003.
[15] A. Krizhevsky. cuda-convnet [online]. Available:
https://code.google.com/p/cuda-convnet/

1135

