
DISTRIBUTED DENSE STEREO MATCHING FOR 3D RECONSTRUCTION USING

PARALLEL-BASED PROCESSING ADVANTAGES

R. Ralha⋆ G. Falcao⋆ J. Andrade⋆ M. Antunes‡ J. P. Barreto† U. Nunes†

⋆ Instituto de Telecomunicações, Dept. of Electr. and Computer Eng., Univ. of Coimbra, Portugal
‡Interdisciplinary Centre for Security, Reliability and Trust (SnT), Univ. of Luxembourg, Luxembourg
†Institute of Systems and Robotics, Dept. of Electr. and Computer Eng., Univ. of Coimbra, Portugal

ABSTRACT

Instead of measuring photo-similarity, SymStereo is a stereo

vision algorithm that uses new cost functions to measure

symmetry differences between pairs of images. In this pa-

per we propose the acceleration of a complete signal pro-

cessing pipeline for generating 3D volumes based on dense

SymStereo. The outputs here generated achieve superior

reconstruction quality namely for slant based scenarios, so

typical in autonomous systems, that have to capture pairs

of images and perform moving decisions in real-time. In

particular, we analyse several parallelization strategies for

the compute-intensive aggregation procedure using different

parameters and evaluate a trade-off between processing time,

and higher precision of the calculated depths and quality of

the final reconstructed 3D volume. The developed parallel

pipeline allows to process more than 4.5 volumes per second

for high resolution images using commodity GPUs, which

conveniently suits its application in a variety of robotics

systems.

Index Terms— Stereo estimation, SymStereo, Parallel

processing, 3D Reconstruction, High resolution images

1. INTRODUCTION

Recently, a new algorithm that uses photo-symmetry instead

of photo-similarity-based cost functions has been proposed

by Antunes et al. [1, 2]. This new pipeline for calculating dis-

parity maps, baptised SymStereo, and in particular its variant

logN shows superior performance in recovering the scene’s

depth for pairs of images with slant (please see the log20

variant in Fig.18 from [2]). This particularity of the algo-

rithm encourages the development of new methods for ex-

tracting higher quality from the generated disparity map and

3D volume, which is a fundamental procedure in autonomous

systems, namely vehicles and robots, that constantly have to

This work was supported by the Portuguese Foundation for Science and

Technology (FCT) under grants AMS-HMI12: RECI/EEI-AUT/0181/2012,

UID/EEA/50008/2013 and SFRH/BD/78238/2011 and also by a Google Re-

search Award from Google Inc.

perform analysis of images with slant for making decisions,

namely regarding trajectory, preferably in real-time.

This paper investigates the manipulation of the sensitive

aggregation phase in the SymStereo processing pipeline [3],

namely the algorithmic gains achievable with its paralleliza-

tion and the corresponding room they create for increasing

the complexity of the aggregation procedure that may pro-

duce better 3D images. The main contributions of this paper

can be summarized as: i) proposing a real-time stereo pipeline

that creates realistic 3D volumes for slant-based scenarios; ii)

investigating the acceleration that multiple GPUs can provide

to the pipeline, for creating a real-time 3D volume genera-

tor; and iii) analysing how the quality of the final 3D volume

depends on the variation of the aggregation window size.

2. STEREO ALGORITHM PHASES

Stereo Algorithms comprise one or more of the following:

1. Matching cost;
2. Cost (support) aggregation;
3. Disparity computation;
4. Disparity refinement.

This paper focus on the final three steps, as the SymStereo

matching cost pipeline was already addressed [3]. Addition-

ally, we add a fifth step to our study, the ’Disparity to 3D’

step, where 3D coordinates are calculated to generate a 3D

volume of the 2D disparity maps.

2.1. Cost aggregation and disparity computation

After the calculation of matching costs, the best disparity

for each pixel must be chosen from the DSI [4].To achieve

this, two types of aggregation algorithms can be used: local

or global ones. While local algorithms use a window-based

approach [5], global algorithms solve a global optimization

problem by finding the disparity that minimizes a global cost

function that is composed by data and smoothness terms [6].

Despite usually producing better results, global algo-

rithms are computationally heavier and not all can be paral-

lelized. This is the main reason why we use a window-based

algorithm for the cost aggregation phase.

1126978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

Thread Block

...

...

...

DSI

d0

d1

dD

Grid

Block

(0,0)

Block

(0,1)

Block

(0,M-1)

Block

(N-1,0)

Block

(N-1,M-1)

Thread k Thread k+5

Fig. 1. Aggregation phase with window size 3 on the GPU.

(M,N) are the number of blocks in the (x, y) directions.

In Fig.2 we illustrate this phase. We calculate the sum of

the matching costs over a square window for each image pixel

and each disparity. The most accurate disparity will then be

chosen by a Winner-Takes-All (WTA) strategy [6].

2.2. Disparity refinement

The disparity refinement stage can be divided in two sub-

stages: left-right consistency check and filling of occluded

pixels. Occluded pixels are only visible in one of the images.

2.2.1. Left-Right Consistency Check

The left-right consistency check uses two disparity maps, one

computed with the left image as the reference and the other

with the right image. This way, we can subtract the disparities

of corresponding pixels in each image. If the difference is less

than a given threshold, the pixel is considered occluded.

2.2.2. Filling of Occluded Pixels

To fill the occluded pixels, we use an algorithm that performs

a 4-way search for the first non-occluded pixel in each way.

The disparity selected is the median between the four values

that were found.

2.3. From Disparity Maps to 3D

To calculate the 3D coordinates for each pixel, we use the

equations that map 2D coordinates to 3D:

Z = (f ∗ b)/D; (1)

X = ((x− cx) ∗ Z)/f ; (2)

Y = ((y − cy) ∗ Z)/f ; (3)

where f is the focal length (in pixels), b is the distance be-

tween the two lens (in metres), cx and cy are the image centres

(in pixels) and D is the disparity of the pixel.

3. PARALLELIZING 3D PIPELINE

In order to calculate 3D maps in real-time, we use two Nvidia

GTX Titan GPUs to accelerate processing. We exploit a hy-

brid architecture, taking advantage of both CPU and GPUs.

Aggregation

SymStereo

I1

DSI

I2

G

Aggregation

SymStereo

I'1

DSI

I'2

LRCCheck

DispMap1

DispMap0

2D-3D

3D Map

DispMap0

GPU0 GPU1

Disp. Enhan.

CPU

DispMap0

Fig. 2. 3D Pipeline representation, where I1 and I2 are the

left and right images, I ′1 and I ′2 are the left and right images

flipped and G are the Gabor coefficients.

Since data transfers from the CPU to the GPU consume

a significant amount of time to complete, we try to minimize

their impact. Data allocations are pageable in the CPU by de-

fault. Since the GPU cannot access data from pageable mem-

ory, when a transfer is called, data has to be transferred to a

temporary pinned array and only then it is transferred to the

device. To avoid this, we always make pinned allocations in

the host, saving time in data transfers.

3.1. Disparity Calculation

For this step, each thread, corresponding to one pixel, calcu-

lates the sum of the matching costs over the defined square

window, for each disparity, and chooses the disparity with the

highest sum of costs (Fig.2). The amount of data processed

depends on the disparity range we choose at the beginning of

the pipeline and window size. We can evaluate this in Fig.3.

By increasing the window size, not only will there be more

processing time involved but there will also be more accesses

to global memory. To overcome this problem, we tested the

use of shared memory but the quantity of data we would had

to transfer for each block penalised execution time.

1127

55.09% 36.26%

6.16%

0.03%
0.05%
2.41%

32.44%

62.47%

3.62%
0.02%

1.42%
0.03%

Fig. 3. Workload variation by changing the aggregation win-

dow from 9 to 15 on a 768× 1024 pixels image.

3.2. Pixel consistency and filling

In order to perform the consistency check, we have to calcu-

late two disparity maps. To accelerate this step, we used two

GPUs in parallel, each one calculating one of the necessary

maps. As in the previous step, each thread will be responsible

for the verification of the consistency of a pixel. To fill the oc-

cluded pixels we use an algorithm that cannot be parallelized.

This way, we have to transfer data from the GPU to the CPU.

At the end of the process, data is copied back to the GPU.

3.3. 3D Reconstruction

For each pixel, a thread is responsible for calculating the three

coordinates necessary to generate the 3D map. When all the

pixels are processed, data is transferred back to the host.

4. APPARATUS AND EXPERIMENTAL RESULTS

The reconstructed images were processed on a GeForce GTX

Titan dual-GPU workstation with an i7-4770k @ 3.5 GHz us-

ing CUDA 6.5 and GCC 4.4.7. To visualize the 3D maps we

used MeshLab v1.3.2. The developed framework scales with

the number of available hardware resources and can be ported

to run in other multicore architectures [7].

4.1. 3D Reconstruction Results

In order to enhance our results, we decided to alter the win-

dow size of the aggregation stage. This alteration was applied

to three sets of images, one from the Tsukuba set (288x324

pixels), one from the Kitty Dataset [8] (375x1242 pixels)

and another one captured by us (768x1024 pixels). We can

observe the aggregation phase processing times depending on

the window size and image dimensions in Table 1. To perform

the 3D Reconstruction of the images, we used parameter val-

Table 1. Aggregation time (ms) varying the window size
Our dataset KITTI Tsukuba

Aggregation

Window Size
768×1024 375×1242 288×384

9 78.46 51.46 1.99

11 127.26 84.76 2.99

13 171.63 115.94 4.11

15 212.48 140.19 5.46

(a) Tsukuba 3D from [9] (b) Tsukuba 3D from our method

Fig. 4. Tsukuba 3D reconstruction comparing [9] – com-

pressed vertically – with our method for 16 disparities.

ues for the Tsukuba, KITTI and our image datasets provided

by the authors [6, 8] and by our camera.

In Fig.4, we compare the 3D reconstruction for the

Tsukuba image set. We selected a disparity range ranging

from 0 to 15, as suggested in [6], for our method. Despite

some discontinuity errors, mainly in the top right corner, our

reconstruction is pretty accurate.

The 3D reconstructions of the KITTI dataset image and

our own image are shown in Fig.5. These were computed

with a disparity range of 15 to 125, since they are images

with a larger resolution. In the analysis we notice some bad

reconstructed pixels. The SymStereo matching cost struggles

with shadows, reflections and luminosity variations between

the left and right image. By increasing the length of the aggre-

gation window, we minimize these effects but lose definition

on the discontinuities.

Comparing the image of the KITTI dataset with ours, we

Table 2. Pipeline tasks time (ms) and individual kernel

speedup – in brackets – for each image dimension.
Our dataset KITTI Tsukuba

Image Resolution

[Processor] Kernel
768×1024 375×1242 288×384

[CPU] SymStereo 32082.00 19513.00 784.00

[CPU] Aggregation 24024.00 14318.00 495.00

[CPU] LRCCheck 47.02 29.32 4.71

[CPU] Disp. Enhan. 15.98 8.58 1.11

[CPU] 2D-3D 10.62 6.67 1.69

[GPU] SymStereo [252×] 127.51 [207×] 94.28 [160×] 4.91

[GPU] Aggregation [306×] 78.46 [278×] 51.46 [249×] 1.99

[GPU] LRCCheck [775×] 0.06 [647×] 0.05 [303×] 0.02

[CPU] Disp. Enhan. [N/A] 15.98 [N/A] 8.58 [N/A] 1.11

[GPU] 2D-3D [105×] 0.10 [88×] 0.08 [63×] 0.03

1128

(a) Kitty dataset (b) Aggregation window=9 (c) Aggregation window=15

(a) Our dataset (b) Aggregation window=9 (c) Aggregation window=15

Fig. 5. Aggregation window size influence in 3D reconstruction: a) Front reconstructed image; b, c) Side reconstructed image.

see that our image presents better results. Despite both images

having a high level of slanted surfaces, the image of the KITTI

Dataset has more discontinuities (e.g. trees, cars, signs), than

our image. This corroborates with what was shown in [2], that

symmetry-based algorithms have a superior behaviour with

less textured and high slanted surfaces.

In Table 2, we can verify the computation times that each

phase take on the CPU and GPU. For the Tsukuba image, we

were able to achieve up to 124 frames per second (FPS), for

the KITTI dataset image we obtained up to 6.5 FPS and for

our image we measured up to 4.5 FPS.

4.2. Speedup

For our experiment, dedicating two GPUs is a major advan-

tage since the two disparity maps, necessary for left-right con-

sistency check, are computed in parallel. Hereupon, with an

aggregation window of size 9, the Tsukuba image takes ap-

proximately 2.5 seconds to process on the CPU [2]. We man-

aged a total speedup of 318×. For the KITTI dataset image,

we accelerated our program 438×, since its serial counter-

part takes 68 seconds to complete. Finally, for our image, we

achieved a total speedup of 505×, as it consumes 112 seconds

to generate a 3D map. The individual speedups achieved for

each method are broken down in Table 2.

5. RELATION TO PRIOR WORK

Using GPUs for stereo matching has become a recurring

practice nowadays. With the parallel power of these devices,

algorithms are becoming increasingly faster, which enables

to achieve real-time stereo matching performance. Adding

more stages to the stereo algorithm adds complexity but it also

yields better results in the final output. Like us, Kowalczuk

et al. [10] implement a complex stereo algorithm on a GPU,

using an iterative refinement technique for correspondences

with adaptive support-weight. With two aggregation stages,

two refinement stages and consistency check, they achieve a

rate of 62 FPS in low resolution images. Our method has less

stages and achieves 124 FPS for the same dimension.

Regarding 3D reconstruction, Denker et al. [9] uses multi-

camera systems for face recognition and achieves a frame rate

of about 4 FPS with a 1392×1032 resolution, while in [11]

developed a real-time 3D face-measurement system capable

of analysing 6000 to 7000 3D points in 15 FPS. Only once

was the SymStereo framework presented in [2] brought on

to the GPU. Mota et al. [3] implemented the algorithm and

achieved 53 FPS for low resolution images and 3 FPS for

high resolution images. We improved on their work, accel-

erating the framework, adding three more stages for better

visual results and 3D reconstruction, and implementing them

on a dual-GPU system. With it, we achieved a frame rate of

124 FPS for low resolution images and of 4.5 FPS for high

resolution images.

6. CONCLUSIONS AND FUTURE WORK

This work presented a real-time pipeline for 3D reconstruc-

tion that achieves high rates, with 124 FPS for low resolution

images and 4.5 FPS for high resolution ones. We intend to

investigate and apply new types of parallel aggregation algo-

rithms with the objective of enhancing the generated 3D map,

and also to use CUDA streams with the developed methods.

1129

7. REFERENCES

[1] M. Antunes and J.P. Barreto, “Stereo Estimation of

Depth Along Virtual Cut Planes,” in IEEE Int. Conf.

on Computer Vision Workshops, 2011, pp. 2026–2033.

[2] Michel Antunes and João P Barreto, “SymStereo:

Stereo Matching using Induced Symmetry,” Int. Jour-

nal of Computer Vision, pp. 1–22, 2014.

[3] Vasco Mota, Gabriel Falcao, Michel Antunes, Joao Bar-

reto, and Urbano Nunes, “Using the GPU for Fast

Symmetry-based Dense Stereo Matching in High Reso-

lution Images,” in IEEE Int. Conf. on Acoustics, Speech

and Signal Processing. IEEE, 2014, pp. 7520–7524.

[4] R. Szeliski and D. Scharstein, “Sampling the Disparity

Space Image,” IEEE Trans. on Pattern Analysis and Ma-

chine Intelligence, vol. 26, no. 3, pp. 419–425, March

2004.

[5] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addi-

manda, “Classification and Evaluation of Cost Aggre-

gation Methods for Stereo Correspondence,” in IEEE

Conf. on Computer Vision and Pattern Recognition,

June 2008, pp. 1–8.

[6] Daniel Scharstein and Richard Szeliski, “A Taxonomy

and Evaluation of Dense Two-Frame Stereo Correspon-

dence Algorithms,” Int. Journal of Computer Vision,

vol. 47, no. 1-3, pp. 7–42, 2002.

[7] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable

LDPC Decoding on Multicores Using OpenCL [Appli-

cations Corner],” IEEE Signal Proc. Mag., vol. 29, no.

4, pp. 81–109, July 2012.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun, “Are

we ready for Autonomous Driving? The KITTI Vision

Benchmark Suite,” in IEEE Conf. on Computer Vision

and Pattern Recognition, 2012.

[9] Klaus Denker and Georg Umlauf, “Accurate Real-Time

Multi-Camera Stereo-Matching on the GPU for 3D Re-

construction,” Journal of WSCG, vol. 19, no. 1, pp. 9–

16, 2011.

[10] J. Kowalczuk, E.T. Psota, and L.C. Perez, “Real-Time

Stereo Matching on CUDA Using an Iterative Refine-

ment Method for Adaptive Support-Weight Correspon-

dences,” IEEE Trans. on Circuits and Systems for Video

Technology, vol. 23, no. 1, pp. 94–104, Jan 2013.

[11] M. Miura, K. Fudano, K. Ito, T. Aoki, H. Takizawa, and

H. Kobayashi, “GPU Implementation of Phase-based

Stereo Correspondence and its Application,” in IEEE

Int. Conf. on Image Processing, 2012, pp. 1697–1700.

1130

