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ABSTRACT

We propose a new method to detect double-talk and control
filter adaptation in an acoustic echo canceller (AEC). The
method is based on computing the zero-crossings rate (ZCR)
of the AEC output and comparing it against a suitably-chosen
threshold. As the ZCR values falls below the threshold, dou-
ble talk is declared and the AEC filter adaptation is either
slowed down or halted. The zero crossings are very easy
to compute by observing the sign changes of two consecu-
tive samples from the output of the AEC. In contrast to most
existing methods, the computational burden of the proposed
method is minimal and it can, therefore, be conveniently im-
plemented on a low-power, low-resource processor. This com-
putational simplicity is enjoyed without sacrificing for any
AEC performance. We will illustrate effectiveness of the pro-
posed method by comparing against the existing state of the
art and present guidelines on choosing parameters for com-
puting the sample-by-sample ZCR.

Index Terms— Speech Enhancement, Zero Crossing Rate,
Low-Power Processing.

1. INTRODUCTION

The history of acoustic echo cancellation (AEC) dates back
to 1960s, and since then a number of attractive methods have
been proposed to address various aspects of this problem [1].
One of the primary issues that has remained at the forefront
of AEC development is its handling of double talk (DT) [2].
DT happens when both near-end and far-end speakers talk at
the same time. The adaptive filter in an AEC is designed to
cancel only the far-end echo, and any presence of near-end
signal strongly influences its convergence. The DT results
in divergence of the adaptive filter and causes the far-end lis-
tener to hear its own echo, which is annoying and undesirable.
Ever since the development of the first adaptive-filter based
echo canceller several methods have been proposed to detect
DT and thus avoid filter divergence. DT detectors have now
become an integral part of almost all commercially available

echo cancellers. A review of classical DT detection meth-
ods can be found in [3]. Certain methods handle the DT
by restricting the communication to only one way; i.e., half-
duplex. In other cases, a DT detector is used that freezes filter
adaptation in the presence of DT [1]. While half-duplex com-
munication is not desirable in many situations the DT detector
based AEC bring along its own issues. First, in order to ben-
efit from frozen adaptation, the DT detector should correctly
estimate the start and end of the near-end speech. Any mis-
detection may lead to echo leakage to the far end. Secondly,
the echo cancellation may suffer if the echo path changes dur-
ing the time of frozen adaptation.

In this paper, we present an effective and a cost-efficient
solution to the DT problem. The simplicity of the proposed
method allows it to be implemented on a low-power proces-
sor without any loss in performance. This solution is based on
measuring the zero-crossing rates (ZCR) of the AEC output
and comparing it against a threshold. We show that the ZCR
serves as a classifier in discriminating between the presence
and absence of DT. We employ this detector in the normalized
least-mean squared (NLMS) based AEC and control the filter
adaptation based on its decisions. The ZCR is measured over
a window of samples and its estimate can be updated with
each incoming sample or after every block of samples. As a
result, no additional delay is introduced, and the ZCR is up-
dated by comparing sign of the incoming sample against that
of the previous sample. The main contribution of the paper is
low complexity of the proposed method, which shines in con-
trast to the existing methods, where in some cases expensive
correlation is computed over a window of samples. Further-
more, the memory requirement is minimal since only a bit is
needed to store a zero-crossing decision. We compare perfor-
mance of the proposed method against the well-known nor-
malized cross-correlation method of [4] as the speech mode
changes from far-end speaker (single talker) only to DT and
then back to the single talker case. We also provide guide-
lines to choose the window size over which ZCR is measured
and to select the threshold. We would like to emphasize that
although the results that we present in the paper pertain to
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NLMS-based implementation, the theory and implementation
is applicable to any AEC configuration where DT control is
desired.

2. AEC AND THE DT PROBLEM

Let us consider the AEC setup shown in Fig. 1. The far-end
and near-end speakers are denoted by s1(n) and s2(n), re-
spectively. The echo path from the loudspeaker to the micro-
phone is modeled by a length-L FIR filter h(n) =

[

h0(n), h1(n),

. . . , hL−1(n)
]T

, where the superscript on the filter coeffi-
cient denotes the tap index and [·]T denotes transposition.
Likewise, the adaptive filter of length P is denoted by w(n) =
[

w0(n), w1(n), . . . , wP−1(n)
]T

.
There are several method available to update the filter co-

efficients w(n). In this paper, we will use the well-known
normalized least-mean squares (NLMS) algorithm [1], be-
cause of its simplicity.

wk(n) = wk(n − 1) + α
e(n)s∗1(n − k)

∑

P−1

i=0
|s1(n − i)|

2
, (1)

for k = 0, . . . , P − 1, where α is the adaptation constant
and (·)∗ denotes complex conjugation. The echo is cancelled
when w(n) = h(n) at convergence. As noted earlier, DT
occurs when the far-end and near-end speakers talk simul-
taneously; i.e., s1(n) 6= 0 and s2(n) 6= 0. In this event
there is a tendency for the AEC to diverge resulting in an-
noying experience for the far-end listener. Handling of DT
in AEC has always remained an area of interest within the
speech research community. Several notable methods have
been proposed for this purpose. In [3], [5], [6], and [7] an
extra component is employed in the AEC to help avoid filter
divergence during DT. This component could be in the form
of a DT detector or a step-size controller. The DT detector de-
tects the presence of DT by comparing some signal statistics
against a pre-set threshold. Most common forms of DT de-
tectors are Geigel detector and detectors based on coherence
or cross-correlation, and their variants. Both these detectors
are sensitive to variations in echo path; moreover the cross-
correlation based detectors are also computationally expen-
sive and an attempt to reduce the complexity comes at an ex-
pense of loss in performance [7]. In [8] the authors presented
a variable step-size NLMS (VSS-NLMS) algorithm that is ro-
bust against DT. The automatic step-size control mechanism
of this method halts the adaptation during instances of DT.
The algorithm did not require explicit DT detection; however
its convergence rate was slow. In [9], the authors proposed
to wipe off the frequency contents in a spectral slit of the
downlink signal, and they detected DT if the same spectral
slit of the microphone input had any frequency content. This
method required frequency-domain transformation and was
also sensitive to near-end noise.

+
-

( )w n ( )h n

++

1( )s n

( )x n2ˆ( ) ( )e n s n=
2( )s n

To far-end

Fig. 1. AEC setup.

3. ZCR FOR DT DETECTION

For digital signals, zero crossing occurs if two consecutive
samples have opposite signs. The ZCR is defined as the num-
ber of zero crossings per sample, and, for an analysis window
of M samples, it is computed by dividing the number of zero
crossings by M . At time n, the ZCR for digital signal y(n) is
given by

ZCR(n) =

1

2M

n
∑

m=n−M+1

|sgn (y(m)) − sgn (y(m − 1))|ω(n − m),

(2)

where the sign operator is defined as

sgn (y(n)) =

{

1 y(n) ≥ 0
−1 y(n) < 0,

and ω(n) is the window operator. The term within the modu-
lus operator is equal to 2 when a zero crossing occurs and the
two signal samples have opposite sign. The summation on the
right side of (2) is, therefore, divided by 2 to obtain the total
number of zero crossings. After measuring the ZCR over a
window of M samples the short-time window is advanced by
K samples to obtain the next estimate. As we will see later,
the parameters M and K play a key role in the operation of
the DT detector.

Along with other well-known measures, such as short-
time energy and short-time auto-correlation, the ZCR is also
used to characterize time-domain signals. In the realm of
speech processing, zero crossings have been used in the past
for speech recognition and speech-music discrimination [10].
One of the classical uses of ZCR is the frequency estimation
of sinusoidal signals. Signals with higher frequency contents
result in higher short-time ZCR, whereas low-frequency sig-
nals have low short-time ZCR. It is also known that high-
energy signals have lower ZCR and low-energy signals have
higher ZCR [10]. It is this property of ZCR that we will ex-
ploit to detect the occurrence of near-end speech.
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4. DT DETECTION IN AEC USING ZCR

In the event of DT, the near-end signal s2(n) acts as disturbing
noise to the adaptive filter that cancels the acoustic echo. As
a result, the filter diverges and unwanted echo escapes to the
far-end. Mathematically, the AEC output in the presence of
DT is given by

e(n) = [h(n) −w(n)] ? s1(n) + s2(n), (3)

where ? is convolution operator. In the absence of any cor-
rective measure taken to counter against the impact of DT,
w(n) 6= h(n), and the energy of the AEC output remains
high during this time. Consequently, the ZCR stays low dur-
ing the time that the near-end speaker is active. We monitor
the ZCR to detect DT and propose appropriate measures to
avoid filter divergence.

Let us look at an example to analyze the use of ZCR for
detecting DT. We consider a conversation between a male
speaker at the far-end and a female speaker at the near-end.
The two speech signals are shown in Fig. 2. It is seen from
the figure that the far-end speaker talks for the first 10 sec,
followed by about 11 sec of DT, with both s1(n) 6= 0 and
s2(n) 6= 0. Finally, the last 4 sec of conversation again con-
stitutes single talk. Such an example is suitable to evaluate
a DT detection algorithm as the conversation mode changes
from single talk to DT and then back to single talk. In our
example, the echo length is about 30 sec and the average far-
end to DT ratio is 5dB. To evaluate the AEC performance we
compute adaptive-filter misalignment given by

20 log 10
‖h−w‖

‖h‖
. (4)

With reference to (1), we used a step size of α = 0.5.
Fig. 3 shows the misalignment of the AEC adaptive fil-

ter. The filter diverged as soon as the near-end speaker started
speaking. At the end of the near-end speech, the filter is
again seen to converge. It should be noted that the filter mis-
alignment requires a knowledge of the echo impulse response
h(n), which is not available in practice; it is shown here to
illustrate the impact of DT on the filter AEC performance.
Also shown in Fig. 3 is the ZCR at the output of the AEC. It
is clearly seen that the ZCR falls with the introduction of DT
and stays low as long as the two speakers continue talking
simultaneously. The ZCR was updated with each incoming
sample (K = 1) and computed using a rectangular window
of M = 1000 samples, which corresponds to 125 msec at
8kHz. ZCR has been used in the past for DTD. For example,
the inventors in [11] compute two ZCRs, one for the near-
end signal and the other for the far-end signal, which are then
compared for the occurrence of double talk. This method is
based on spectral differences between the two signals and,
thus, will only work for voiced speech. On the other hand, our
method is based on signal energy and works for both voiced
and unvoiced parts of speech.
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Fig. 2. The two speech signals used in the experiment. s1(n)
is the far-end speech, whereas s2(n) is the near-end speech.

5. NEW AEC USING ZCR-BASED DT DETECTOR

In order to avoid filter divergence during DT we place the
ZCR-based DT in AEC as shown in Fig. 4. The logic within
the detector consists of measuring the short-time ZCR and
comparing it against a suitably-chosen threshold γ (0 ≤ γ <

1). As the ZCR falls below γ, DT is declared and filter adap-
tation is halted. Otherwise, normal processing takes place.
This can be summarized as follows:

if ZCR(n) > γ

w̃ = w(n)
else if ZCR(n) ≤ γ

e(n) = x(n) − w̃ ? s1(n)
end

Note that w̃ is used to store the last “good” set of filter
coefficients that do not let the filter diverge. The coefficients
in w̃ are updated only in the absence of DT. During DT, w̃ is
used to compute the AEC output. Let us use this detector to
control DT in the NLMS-based AEC. Using the values of M

and K that we used to plot ZCR in Fig. 3, we ran the AEC
with the ZCR-based DT detector of Fig. 4 using γ = 0.45.
The resulting AEC filter misalignment is shown in Fig. 5.
Also shown in the same plot is the filter misalignment from
Fig. 3 with no control for double talk. It is seen that the DT
is correctly detected using ZCR at 10 sec and the filter adap-
tation is halted during the time that the detector indicates the
presence of DT. Normal processing resumes at around 22 sec
when the near-end speech ends.

Let us now use the same test signals s1(n) and s2(n)
and run them through the normalized cross-correlation (NCC)
based DT detector [4]. We used a window size of 550 in the
NCC based detector, which resulted in best performance dur-
ing the occurrence of DT. The results are presented in Fig. 5.
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Fig. 3. Behavior of the NLMS-based AEC in the presence
of DT. The adaptive-filter misalignment and the ZCR of the
AEC output are shown.
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Fig. 4. AEC with ZCR-Based DT Detector.

We first note that the NCC detector miscalculates the far-end
only speech as DT during the time interval from 1 msec to
about 8 msec. This halts the learning of the adaptive filter.
The performance of NCC-based detector is very close to that
of ZCR-based detector during the double talk interval. How-
ever, as the ZCR-based detector continues to further converge
after about 22 sec, the NCC-based detector does not. As far
as complexity and memory requirements are concerned, the
cross-correlation based methods, require at least O(L2) mul-
tiplications at each iterations. The ZCR-based method, on the
other hand, requires only sign comparison at each iteration.

6. PRACTICAL CONSIDERATIONS

The performance of ZCR detector is dependent on the param-
eters M , K, and γ. A shorter window length M provides less
smoothing and is thus prone to making an incorrect decision
when the ZCR happens to be close to the threshold. On the
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Fig. 5. Misalignment of the NLMS-based AEC (a) without
a DT detector, (2) with a ZCR-based DTD, and (3) with a
NCC-based DT detector. Note that the result without the DT
detector are the same as in Fig. 3.

other hand, longer window will result in smoothed ZCR esti-
mate and may help in suppressing any error due to ZCR being
close to the threshold. However, a longer window may result
in false decisions, especially in locating the true start and end
of DT regions. Our experiments showed that a window of size
1000 samples (125 msec at 8kHz) is suitable to ease the trade-
off. The parameter K determines the number of samples after
which the ZCR is updated. Ideally, K = 1 is desired when
the ZCR is updated with each incoming sample. For K = 1,
M bits are needed to store M zero crossing decisions. On
the other hand, memory and computational savings can be
made if K > 1 is chosen. Finally, the threshold γ is carefully
chosen to avoid any mis-detection or false alarm. Our exper-
iments with various test signals showed that γ = 0.45 to 0.5
is suitable for a window size of M = 1000.

7. CONCLUSION

We employed short-time ZCR to detect and control DT in
time-domain AEC. The zero crossings are extremely simple
to compute and proves to be an effective discriminant of DT.
The DT detector based on the ZCR is used to drive the AEC
filter, halting its adaptation when DT is detected. The detec-
tor operation is governed by three parameters that are easy to
adjust and requires minimal tuning. Because of its simplicity
in computation and ease of operation, the ZCR-based AEC is
an excellent choice for implementation on a low-power and
low-resource DSP. It has also shown improved performance
over the well-known NCC-based detector.
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