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ABSTRACT 

 

Localization in global navigation satellite system denied 

environments using inertial sensors alone, or radio sensors 

alone or a combination of both are the currently active 

research topics. The current research works are primarily 

focused on static environments with earth fixed coordinate 

frames, having nonmoving maps. In this research work, we 

use micro electromechanical sensors based inertial sensors, 

band pass filtering, particle filtering, maps and map matching 

techniques for pedestrian localization with respect to on 

ground moving platforms such as train or bus. Since these 

platforms are moving, the maps of such platforms are moving 

maps with respect to earth centered, earth fixed coordinate 

frames. The techniques of this research work could further be 

extended and adapted to other moving platforms such as 

airplanes, boats and submarines. 

 

Index Terms— moving maps, particle filters, map 

matching, pedestrian dead reckoning, sensor fusion, indoor 

environments 

 

1. INTRODUCTION 

 

Knowing where we are located on a map is very useful 

information that helps us to find where our intended 

destination is, how far it is, and how quickly we can reach our 

destination. There exist several fields of interest such as 

pedestrian navigation, robotics, vehicular navigation, which 

needs a solution for localization. In this context, various 

solutions have been researched for decades. For example, 

global navigation satellite system (GNSS) provides 

localization solution to land based objects with respect to 

earth, with earth centered, earth fixed (ECEF) coordinate 

system [1]. Simultaneous localization and map matching 

(SLAM) is primarily adopted in robotic localization [2-5]. 

Different combinations of micro electromechanical sensors, 

vision sensors, radio sensors, dead reckoning, particle 

filtering, and map matching techniques are adopted in various 

fields of localization such as robotics, pedestrian and 

vehicular navigation [6-10]. In all these research works the 

localization is achieved with respect to ECEF system, 

considering map of the earth to be static with respect to earth 

itself. 

In this paper, we propose novel concepts and techniques 

that could be applied for localizing objects in non-static 

environments, for example, airplanes, trains, boats, busses 

and different transportation vehicles. Maps of such 

environments are static but these environments are moving 

with respect to world map, hence the use the term moving for 

the maps of such environments. The moving maps can be 

either 2D or 3D maps, which layout the map of the moving 

objects mentioned above. The concept of moving maps was 

proposed in our earlier work in [11] but we have not shown 

any experiments to show the feasibility of the concept. In this 

paper, we introduce experiments where a bus is used as an 

experimental moving platform. Pedestrian localization 

experiments in this environment are carried out. The idea here 

is to obtain the accelerometer and gyro readings from a 

MEMS inertial unit carried by a person walking in the bus in 

real time. For example, a smart phone device contains such 

sensors and can be carried by a person. Such obtained data is 

processed to derive the attitude, and displacement 

information of the person walking in the bus, and apply the 

pedestrian dead reckoning and particle filter techniques [12] 

to localize the person in the bus. 

 

2. THEORETICAL BACKGROUND 

 

In pedestrian navigation solution, dead reckoning is a 

basic technique that has been used for several years now [13, 

14]. Pedestrian navigation based on inertial measurements is 

popular nowadays [15] due to low cost MEMS sensors, and 

also with a combination of radio signal finger printing 

techniques [16]. In these types of localization techniques, the 

attitude information is primarily estimated using MEMS 

sensors namely gyroscope and accelerometer data. Dead 

reckoning is a method of deducing the current position 

utilizing the past known position and current displacement 

and attitude. For pedestrian dead reckoning (PDR) the 

information about the step count and step length is used in 

localizing a pedestrian. In its simplicity, a 2D position 

(𝐸𝑛, 𝑁𝑛) at time instance 𝑛, where 𝐸, and 𝑁 denote East, and 

North coordinates on the map, respectively, is as follows 

 

(𝐸𝑛, 𝑁𝑛)  =  [
𝐸𝑛−1 + 𝛥𝑆𝑛𝑐𝑜𝑠(𝐻𝑛)
𝑁𝑛−1 + 𝛥𝑆𝑛𝑠𝑖𝑛(𝐻𝑛)

] (1) 
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where 𝐸𝑛−1, 𝑁𝑛−1 is the past known position, 𝛥𝑆𝑛 and 𝐻𝑛 are 

the displacement and heading from at time instance 𝑛. Using 

gyroscope data the heading is estimated, and the 

accelerometer data is used to estimate displacement. Because 

of the inherent errors [17] of these sensors the position 

estimated with (1) using these sensor data will also have 

errors, and these errors get accumulated over time to give a 

larger error in the overall position solution. To mitigate such 

errors, signal processing techniques are used, such as 

bandpass filters [18], Kalman filters (KF) [17], extended KF 

(EKF) [19], and particle filters with map matching [20]. 

Here we have used pedestrian dead reckoning (PDR) and 

PF for localization of a person walking in the bus. The new 

challenge here is to extract meaningful information from the 

sensor data obtained in the moving bus environment, and with 

dynamic walking nature of the person carrying the sensors. 

Due to this dynamic nature of the bus motion, the information 

contained in the walkers’ inertial sensor data will be a 

superposition of the motions of the bus and the walker. 

Processing such data to extract walker motion is expected to 

be difficult. Other challenge would be to apply particle 

filtering (PF) with map matching in such dynamic moving 

maps, with such sensor data. In this paper, we assume that the 

entry point to such moving maps is fixed and known, and this 

known location will act as the initialization coordinate for the 

particles in the PF system. 

 

3. METHODS AND TECHNIQUES  

 

In GNSS positioning solution, the motion of earth is 

modeled and taken in to account in the positioning equations 

to calculate the positioning solution in ECEF system [1]. 

Hence the map is assumed to be static by the end user, while 

the user is moving on the earth. In PDR, also localization 

solution is achieved in ECEF system. In PDR, gyroscope 

detects much higher rate of angular movements than 

compared to earth’s rate of rotation, which is very slow. The 

errors inherent to the gyroscope are more significant 

compared to the error induced by neglecting the earth rotation 

rate [21] in localization solution. Since the maps used in PDR 

are fixed to the ECEF system, these maps can be assumed to 

be static similar to GNSS positioning.  

Where as in this paper, a bus moving container 

movements such as vibrations due to motion, and rotations 

due to turnings of the bus, are significantly added to the 

walking motion sensor data. Since this data is a superposition 

of walker movements and bus movements, these movements 

cannot be ignored similar to neglecting the earth rotation rate 

in static PDR solution. Because of such movements of the bus 

platform with respect to ECEF system, the moving platform 

becomes a moving map in which localization is performed. 

For achieving a solution in such environments the movements 

of the platform needs to be separated from the superposed 

data in the walkers’ inertial measurement unit (IMU) data. 

Thus separated data can then be used to extract the walkers’ 

heading and step displacement information and apply PDR. 

 

3.1. Step Detection and Heading Estimation 

 

The raw signal data of accelerometer and gyroscope 

sensors, representing walking motion, cannot be directly used 

to detect steps and heading respectively. The sensors are very 

sensitive to motion, that they will also capture frequency 

components pertaining to other motions, such as high 

frequency vibrations induced by bus motion to the walking 

person. For this reason, we need to filter these signals. Here 

we are interested in human walking, and heading information, 

which happen at low frequency at about less than 6Hz. We 

pass the bus and walkers’ time synchronized sensor data 

through band pass filter [18]. The 3-axis accelerometer norm 

signal of the walkers’ IMU, after passing through the band 

pass filter is passed through the differentiator function to 

enhance the remaining high frequency components around 3-

5Hz components, which corresponds to peaks during the foot 

fall. In our experiments, we have applied band pass filtering 

to both accelerometer and gyro data, as the vibrations of bus 

motion would have unwanted high frequency components. 

The zero crossings are searched in the output 

accelerometer norm signal from the differentiator to mark the 

step start and the step end to count as one step. During this 

process we also evaluate the step frequency and the variance 

of the accelerometer data, which are used in adaptively 

evaluating the length of the step during a detected step [22]. 

We have implemented a heading estimation algorithm that 

uses band pass filtered 3-axis gyro and accelerometer data to 

project gyro data to the horizontal plane with respect to the 

ground, by using the gravity component from the 

accelerometer data [23]. The block diagram of the 

implemented system is shown in Fig. 1(a). 

 

3.2. Particle Filtering  
 

Particle filtering (e.g., [12]) is an approximation of the 

Bayesian filter where the posterior distribution 𝑝(𝑥𝑛|𝑦1,…,𝑛), 

with 𝑥𝑛 denoting the state vector at time step 𝑛 and 𝑦1,…,𝑛 

being the measurements, is characterized by a cloud of 

random samples, called particles, instead of, for example, the 

moments of the distribution. The advantage of this 

representation is the ability to operate on arbitrary 

distributions, thus making it possible to estimate, for example, 

multimodal distributions which often cause divergence in 

Kalman-type and other filters that assume Gaussian 

distributions. PF is a Monte Carlo method and both its 

performance and computational complexity depend on the 

number of particles used. Here we used bootstrap variant of 

PF (BPF), where the importance distribution is chosen to be 

the transitional prior distribution. Suppose we
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have 𝑁 particles 𝑥𝑖 with nonnegative weights 𝑤𝑖  , 𝑖 =
1, … , 𝑁. Each particle is a state vector containing the 
quantities that are to be estimated 

 

𝑥𝑖 = [
𝐸𝑖

𝑁𝑖
].    (2) 

In the importance sampling phase of BPF, we draw particles 

from the transitional distribution specified by contextual 

dynamic model at each 𝑛𝑡ℎ time step  

 

𝑥𝑛
𝑖 |𝑥𝑛−1

𝑖 =

{
 
 
 

 
 
 

[
𝐸𝑛−1 
𝑖  +    𝛥𝑆𝑛  +    𝑞𝑛 

 
𝐶 +   𝜐𝑛

] 𝑖𝑓  𝛥𝐻𝑛 ≤ 𝑇𝐻 

 
                                                                              (3)

[
 𝐸𝑛−1
𝑖 + 𝛥𝑆𝑛𝑐𝑜𝑠(𝐻𝑛) +  𝑞𝑛

 

 𝑁𝑛−1
𝑖 + 𝛥𝑆𝑛𝑠𝑖𝑛(𝐻𝑛) +  𝑟𝑛

 ] 𝑖𝑓  𝛥𝐻𝑛 > 𝑇𝐻      

 

 

where 𝛥𝑆𝑛 is the estimated distance travelled by pedestrian 

during a single step, and 𝐶 is a constant value representing 

the north coordinate component of the center pathway of the 

bus. Here 𝜐𝑛, 𝑞𝑛 , 𝑟𝑛 are normally distributed noises. 𝛥𝐻𝑛 is 

the total heading change during the step taken by the 

pedestrian and 𝑇𝐻  is the threshold of pedestrian turn angle 

during a step to indicate if a person is either walking straight 

in path way of the bus or about to settle at some place in the 

bus.  

In the reweighting step, the weights of the particles are 

modified according to the likelihood of a measurement given 

the state vector. In the case of the bootstrap filter, the update 

is done according to the simple proportion 

 

𝑤𝑛
𝑖 ∝ 𝑝(𝑦𝑛|𝑥𝑛

𝑖 )𝑤𝑛−1
𝑖 .     (4) 

 

The weights are normalized to sum to unity after updating, 

which enables to estimate the mean of the posterior 

distribution as the weighted average of the particles.  

In this study, map update likelihood is computed by 

modeling each particle as a freely moving point mass. While 

the particles are propagated, the posterior distribution would 

have only a subset of the particles that were propagated in the 

previous step. A partial set of particles would be cut-off from 

the distribution if that particle crosses the boundaries or 

partitions of the bus map. The partitions represent the seating 

arrangement and the boundaries represent the bus body. We 

use the 2D map as a source of measurement updates from the 

pseudo-measurement model 

 

𝑝(𝑦𝑛
𝑖 |𝑥𝑛

𝑖 ) =  {

0 𝑖𝑓 𝑥𝑛
𝑖  𝑐𝑟𝑜𝑠𝑠𝑒𝑠 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 

𝑜𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑏𝑢𝑠 𝑚𝑎𝑝

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

    (5) 

 

It means that the particles, which cross the partition or the 

boundary of the bus are discarded. At any instance of time 

step of propagation, if the number of particles in the posterior 

distribution falls below a threshold, a resampling is 

performed. A particle is said to be crossing a partition or the 

boundary, for example, when the line formed by the 

particles previous coordinate and the current coordinate 

intersects with any of the lines representing the boundary or 

a partition [7]. It is obvious that discarding collided particles 

leads to a situation where only a small fraction of the 𝑁 

particles are actually used for the state estimation. Such a 

cloud of particles is not a good approximation of a probability 

distribution. Additionally it would unnecessarily consume 

computational resources if zero-weighted particles are 

propagated. This problem can be avoided by resampling. It is 

a procedure, in which a new set of 𝑁 particles is drawn from 

the discrete probability distribution defined by the old 

particles and their respective weights. The newly obtained set 

of particles then represent the same distribution as the old 

one, but with a full number of “alive” particles. This process 

of prediction and update is performed as long as the 

localization is needed and the sensor data is available.  

 

4. EXPERIMENTS 

 

As a simple case scenario of localizing in moving maps, 

we choose bus to be our moving map environment. We have 

   
 (a)       (b)   

Fig 1 (a) Block diagram of the system and (b) IMU unit used to collect sensor data. 
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conducted data collection trials in this environment using two 

custom built IMU shown in Fig. 1(b), with 3-axis 

accelerometer, gyroscope, and a GPS based timestamp 

logger. Data sampling was done with gyro sensor at 100Hz, 

and accelerometer at 500Hz. The timestamp data from GPS 

logger was used for synchronizing the logged data between 

the two IMUs. In this field test, two persons were used to 

collect the data. The first person boarded the bus at the first 

bus stop and attached the inertial sensor unit to the body of 

the bus, thus collecting the accelerometer and gyro data 

corresponding to the bus. The second person boarded the bus 

in the next stop, while another sensor is attached to his waist 

belt. Both the IMU data is synchronized with the help of GPS 

timestamps. 

As a reference for verifying our localization results, 

walking motion data was collected by walking in a bus on a 

certain path. From the front of the bus, the person walked to 

the last middle seat while the bus is moving and sat in the bus 

at that location. After a while the person walked back to the 

front of the bus. The collected sensor data was processed 

offline in MATLAB according to the methods mentioned 

section 3.1. The steps detected using the accelerometer data, 

along with the accelerometer data from the differentiator 

output are shown in Fig. 2(a). The final projected heading 

data can be seen in Fig 2(b). Adaptive step length estimation 

is an essential requirement because of dynamic nature of the 

bus and walking movements where the step lengths are not 

fixed. Using thus obtained heading and step length 

information, dead reckoning is applied in prediction step 

according to (3) and as the measurement update step the 

posterior distribution is obtained using (4) & (5). We have 

used 150 particles for the PF simulations. The experimental 

localization results are shown in Fig 3. From these results it 

can be seen that the pedestrian in the bus can be localized to 

three different sections of the bus, such as front, last or middle 

sections and closer to the expected seat. In this experiment, 

the localization solution is within 1.5 meters and it is 

comparable in general, to localization solutions in static 

platforms.  

 

5. CONCLUSIONS 

 

The feasibility of localizing in moving containers such as 

trains, busses, or ships was evaluated by conducting 

experiments in a bus as a simple use case. The experimental 

results show that the localization of a walking person in the 

bus is feasible. The dynamic nature of the bus and the walking 

person movements poses a challenging task working with the 

sensor data in such environments. At this stage we realize 

that, the knowledge of heading information of the moving 

containers would help to offset the heading sensed by the 

sensors attached to the walking person, and enable to provide 

better localization solution. Our proposed contextual 

dynamic model (3) for bootstrap PF is expected to reduce the 

degeneracy problem of particle filter, and it is a specific 

model to be used with the bus container moving map model 

specific to our experiment. Such dynamic models should be 

chosen, by taking the map information in to account, for 

example information such as pathways, turns, obstacles, 

ramps and stairs. In the future, we plan to do more tests in the 

bus container with complex use case scenarios, and later plan 

to work with train containers. The localization solution in 

such moving containers helps the users of the system for 

example to quickly locate their friend inside the bus, a coffee 

kiosk inside a train, and helps to navigate between 

compartments and to another place of interest in the train or 

a ship. 

 
(a) 

 

 
(b) 

Fig 2 (a) Processed accelerometer data representing walker 

motion and (b) processed gyroscope data representing walker’s 

heading estimate. Detected steps are plotted with start and end 

markings for each step on both (a) and (b) plots. 

 

Fig 3 Localization solution in the bus map in meters. Left 

arrows indicate step locations forward direction walking to last 

seat and right arrow back to front of the bus. 

1119



 

6. REFERENCES 

 
[1] E.D. Kaplan, and C.J. Hegarty, Understanding GPS principles 

and applications, 2nd edn, Artech House Inc., MA, pp. 673, 2006. 

 

[2] N.A. Berkovskii, and G.A. Dmitriy, “Using Particle Filters for 

Modeling Landmarks' Uncertainties in Bearing-only SLAM,” in 

Proc. IEEE Int. Conf. Advanced Intelligent Mechatronics, pp. 1042-

1047, 8-11 July 2014. 

 

[3] L. Zhiwei, X. Xiaogen, and F. Zhenzhen, “A visual SLAM using 

graph method,” in Proc. IEEE Int. Conf. Mechatronics and 

Automation, 2014, pp.729-733, 3-6 Aug. 

 

[4] L.M. Paz, P. Jensfelt, J.D. Tardos, and J. Neira, “EKF SLAM 

updates in O(n) with Divide and Conquer SLAM,” in Proc. IEEE 

Int. Conf. Robotics and Automation, pp.1657-1663, 10-14 Apr. 

2007. 

 

[5] Z. Liang, H. Shoudong, and G. Dissanayake, “Linear SLAM: A 

linear solution to the feature-based and pose graph SLAM based on 

submap joining,” in Proc. IEEE Int. Conf. Intelligent Robots and 

Systems, pp.24-30, 3-7 Nov. 2013. 

 

[6] C. Chen, W. Chai, Y. Zhang, and H. Roth, “A RGB and D Vision 

Aided Multi-sensor System for Indoor Mobile Robot and Pedestrian 

Seamless Navigation,” in Proc. IEEE/ION PLANS, Monterey, CA, 

pp. 1020-1025, May 2014. 

 

[7] A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. 

Collin, and J. Takala, “Distributed Indoor Positioning System With 

Inertial Measurements and Map Matching,” IEEE Trans. 
Instrumentation and Measurement,  vol.PP, no.99, pp.1.1, 25 April 

2014. 

 

[8] A. Zaydak, W. Deninger, C.K. Toth, and D. Grejner-Brzezinska, 

“Personal Navigation Using Novel Methods of Human Motion 

Modeling,” in Proc. IEEE/ION PLANS, Monterey, CA, pp. 169-173, 

May 2014. 

 

[9] G. Retscher, and Q. Fu, “Active RFID Fingerprinting for Indoor 

Positioning,” in Proc. 21st Int. Techn. Meeting Satellite Division 

Institute of Navigation, Savannah, GA, pp. 1812-1820, Sept. 2008. 

 

[10] Salmon, D.C. Salmon, and D.M. Bevly, “An Exploration of 

Low-Cost Sensor and Vehicle Model Solutions for Ground Vehicle 

Navigation,” in Proc. IEEE/ION PLANS, Monterey, CA, pp. 462-

471, May 2014. 

 

[11] J. Bojja, M. Kirkko-Jaakkola, J. Collin, and J. Takala, “Indoor 

Localization Methods Using Dead Reckoning and 3D Map 

Matching,” J. Signal Process. Syst., vol. 76, no. 3, pp 301-312, Sept. 

2014. 

 

[12] S. Särkkä, Bayesian Filtering and Smoothing, Cambridge 

University Press, pp. 252, 2013.

[13] N. Fujita, J.M. Loomis, R.L Klatzky, and R.G. Golledge, “A 

Minimal Representation for Dead‐Reckoning Navigation: Updating 

the Homing Vector,” Geographical Analysis, vol. 22, no. 4, pp 324-

335, Oct. 1990.  

 

[14] C. Tom Judd, “A Personal Dead Reckoning Module,” in Proc. 

Int. Techn. Meeting Satellite Division Institute of Navigation, 

Kansas City, MO, pp. 47-51, September 1997. 

 

[15] R. Feliz Alonso, E. Zalama Casanova, and G. Gómez, Jaime. 

“Pedestrian tracking using inertial sensors,” Journal of Physical 

Agents, vol. 3, no. 1, Jan. 2009. 

 

[16] U. Schatzberg, L. Banin, and Y. Amizur, “Enhanced WiFi ToF 

Indoor Positioning System with MEMS Based INS and Pedometric 

Information,” in Proc. IEEE/ION PLANS, Monterey, CA, pp. 185-

192, May 2014. 

 

[17] M. Kirkko-Jaakkola, J. Collin, J. Takala, “Bias Prediction for 

MEMS Gyroscopes,” IEEE Sensors Journal, vol.12, no.6, pp.2157-

2163, June 2012. 

 

[18] H. Ying, C. Silex, A. Schnitzer, S. Leonhardt, and M.Schiek, 

“Automatic Step Detection in the Accelerometer Signal,” in Int. 

Workshop Wearable and Implantable Body Sensor Networks, 

Springer Berlin Heidelberg, 2007. 

 

[19] AR. Jimenez, F. Seco, J.C. Prieto, and J. Guevara, “Indoor 

pedestrian navigation using an INS/EKF framework for yaw drift 

reduction and a foot-mounted IMU,” in Proc. IEEE Workshop 

Positioning Navigation and Communication, pp.135, 143, 11-12 

March 2010. 

 

[20] S. Beauregard, and M.W. Klepal, “Indoor PDR performance 

enhancement using minimal map information and particle filters,” 

in Proc. IEEE/ION PLANS, pp.141-147, 5-8 May 2008. 

 

[21] P. D. Groves, Principles of GNSS, inertial, and multi-sensor 

integrated navigation systems, Second Edition, Artech House Inc., 

MA, pp. 800, 2013. 

 

[22] S. H. Shin, C.G. Park, J. W. Kim, H.S. Hong, and J. M. Lee, 

“Adaptive Step Length Estimation Algorithm Using Low-Cost 

MEMS Inertial Sensors,” in Proc. IEEE Int. Symp. Sensors 

Applications, pp.1-5, 6-8 Feb. 2007. 

 

[23] K. Masakatsu, and K. Takeshi, “Personal positioning based on 

walking locomotion analysis with self-contained sensors and a 

wearable camera” In Proc. IEEE/ACM Int. Symp. Mixed and 

Augmented Reality, pp.103-112, 7-10 Oct. 2003. 

1120


