
AN EFFICIENT INTERPOLATION FILTER VLSI ARCHITECTURE FOR HEVC

1*

Wei Zhou,
2
Xin Zhou,

1
Xiaocong Lian

1
School of Electronics and Information,

2
School of Automation,

Northwestern Polytechnical University, Xi’an 710072, China (zhouwei@nwpu.edu.cn)

ABSTRACT

Firstly, an implementation-friendly interpolation filter

algorithm is proposed in this paper. It can save 19.6%

processing time on average with negligible coding quality

degradation. Then based on the proposed algorithm, an

optimized interpolation filter VLSI architecture, composed of

the reused data path of interpolation, efficient memory

organization and the pipeline interpolation filter engine is

presented to reduce the implement hardware area. The

resulting design can achieve 240 MHz with only 37.2K gate

count and support real-time interpolation filter operation of

3840×2160@47fps video application by using 90nm CMOS

technology.

Index Terms—HEVC, interpolation filter, VLSI

1. INTRODUCTION

High Efficiency Video Coding (HEVC) is a new video

coding standard currently being developed jointly by Video

Coding Experts Group (VCEG) and Moving Picture Experts

Group (MPEG) in the joint collaborative team on video coding

(JCT-VC)[1][2]. It provides a significant rate-distortion

improvement over its predecessor H.264/AVC and can save

40%-50% bitrates compared to H.264/AVC, especially for

ultra-high video resolutions [3]. A number of new algorithmic

tools have been proposed, covering many aspects of video

compression technology, such as larger coding units, new

tools and more complex prediction schemes.

Motion compensation is the key factor for efficient video

compression. Compensation for motion with fractional-pel

accuracy requires interpolation of reference pixels. In HEVC,

three different 8-tap or 7-tap filters are used for the

interpolation of half-pixel and quarter-pixel positions,

respectively. Sub-pixel interpolation is one of the most

computationally intensive parts of HEVC. Compared with the

6-tap filter used in H.264/AVC [4], the 7-tap and 8-tap filters

cost more area in hardware implementation and occupy

37%~50% of the total complexity for its DRAM access and

filtering. Therefore it is necessary to design dedicated

hardware architecture for interpolation filter to realize the real-

time processing for high resolutions video.

There are some previous works focusing on designing

efficient architecture for HEVC interpolations [5-8]. Huang

proposed a high-throughput interpolation filter architecture

and a unified filter combining the 8-tap luma and 4-tap chroma

filters to optimize area [5]. In [6], a dedicated hardware

accelerator for interpolation was presented. Although it could

read eight input samples and produce 64 output samples at

each clock cycle, its area cost was huge. A sub-pixel

interpolation hardware only for 4×4 PU size and a 2-D filter

reuse scheme for sub-block 4×4 were proposed in [7]. But the

hardware had restricted reconfigurability. In this paper, a fast

and implementation-friendly interpolation filter algorithm is

proposed. Then based on the proposed algorithm, an efficient

interpolation filter VLSI architecture with the reused data path

and efficient memory organization is presented.

 The rest of this paper is organized as follows. The

implementation-friendly interpolation filter algorithm is

proposed in Section 2. The proposed optimized interpolation

filter VLSI architecture is presented in Section 3 in details.

Section 4 shows the implementation results. Finally, this paper

is concluded in Section 5.

2. PROPOSED INTERPOLATION FILTER

ALGORITHM

2.1 The implementation-friendly interpolation filter

algorithm

Like H.264/AVC, mode decisions with motion estimation

remain among the most time-consuming computations in

HEVC. In the initial HEVC design, there are four different

possible partition modes for inter predictions: two square

partition modes (2N×2N and N×N) and two symmetric motion

partition (SMP) modes (2N×N and N×2N). As a complement

to the square-shaped or non-square symmetrically partitioned

prediction blocks, the asymmetric motion partition (AMP) is

proposed in HEVC. AMP includes four partition modes:

2N×nU, 2N×nD, nR×2N and nL×2N, which divide a coding

block into two asymmetric prediction blocks along the

horizontal or vertical direction. In HEVC, the size of the

largest PU is 64×64. So it can be split into a total of 21

different sizes of sub-PUs. All possible prediction modes are

traversed. And the one having the minimum R-D cost will be

used.

1106978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

According to 8 different possible splittings of PUs, a 4-

pixel interpolation unit and an 8-pixel interpolation unit are

used in the proposed architecture. The splitting modules for 4-

pixel interpolation unit include 4×8, 4×16, 8×4, 16×4, 12×16

and 16×12 modes. The 4-pixel interpolation unit is capable of

processing every sub-block in a coding unit (CU), but it will

cost more hardware areas and clock cycles. So it is very

difficult for a 4-pixel interpolation unit to achieve the real-time

processing of interpolation filter with reasonable computing

powers. The statistics of possible splittings of PUs in HM 13.0

with low delay configuration is shown in Table 1. The size

ranges from 64× to 4×. 64× size includes 64×32 and 64×64

modes. 32× size includes 32×8, 32×16, 32×24, 24×32 and

32×32 modes. 16× size includes 16×8, 16×16, and 16×32

modes. 8× size includes 8×8, 8×16, and 8×32 modes. 4× size

includes 4×8, 4×16, 8×4, 16×4, 12×16 and 16×12 modes. It

can be observed from Table 1 that, although the splitting

modules for a 4-pixel interpolation unit (4× size) are only

about 3.52% of all possible splittings of PUs, they cost more

hardware areas and clock cycles in the hardware

implementation.

Table 1. The inter-prediction splitting modes

 Class A Class B Class C Class D Class E

Size Traffic Cactus BasketballDrill Keiba Johnny

64× 5361 2663 454 88 1703

32× 9945 5751 937 255 1229

16× 19654 8994 2307 876 2193

8× 28408 9261 4232 1409 2098

4× 2582 502 426 150 97

Total 65950 26771 8356 2778 7320

Therefore we propose a fast and implementation-friendly

interpolation algorithm in which the interpolation processing

with a 4-pixel interpolation unit will be skipped. If we use the

8-pixel interpolation unit, we will skip the 4× basic blocks'

(i.e., 4×8, 4×16, 8×4, 16×4, 16×12 and 12×16) interpolation

operation in HEVC. Compared to the original algorithm, the

interpolation process of 4×8, 4×16, 8×4, 16×4, 16×12 and

12×16 sub-PU blocks are skipped in the interpolation. Based

on the proposed fast interpolation algorithm, we re-arrange the

classification of PU splitting modules, as shown in Table 2.

According to the new splitting modules and the proposed fast

algorithm, we can put the minimum 8× PU modes together to

realize the interpolation of larger blocks in the VLSI design.

Table 2. The new splitting module in interpolation filtering

PU module The size of sub-PU

8× 8×8，8×16，8×32

16× 16×8，16×16，16×32

24× 24×32

32× 32×8，32×16，32×24，32×32，32×64

64× 64×32，64×64

2.2 Experiment results

In order to evaluate the performance of the proposed

interpolation algorithm, the algorithm is implemented by using

the recent HEVC reference software (HM 13.0) and is

compared with the original algorithm of HEVC in low

complexity configuration. The performance of the proposed

algorithm is shown in Table 3.

The proposed algorithm is evaluated with QPs 22, 27, 32

and 37 using 14 typical sequences recommended by the JCT-

VC in five resolutions [9]. Computational complexity is

measured by the consumed coding time. BDPSNR (dB) and

BDBR (%) are used to represent the average PSNR and bit

rate difference [10]. "Time save (%)" is used to represent the

coding time change in percentage. The positive and negative

values represent increments and decrements, respectively.

Table 3. Results of the proposed algorithm compared to HEVC

Class Sequence
BD_PSNR

[dB]

BD_Rate

[%]

Time save

[%]

A
PeopleOnStreet -0.0529 1.84 21.9

Traffic -0.0273 0.79 19.4

B

BasketballDrive -0.0136 0.60 19.9

BQTerrace -0.0138 0.83 18.9
Cactus -0.0299 1.35 19.6

C

PartyScene -0.0611 2.84 20.2

Flowervase -0.0961 1.36 17.1

BasketballDrill -0.0275 0.77 18.9

D

BasketballPass -0.1071 2.46 21.0

BlowingBubbles -0.1131 2.81 21.0

Keiba -0.1109 2.31 21.4

E
Johnny -0.0314 1.08 17.4

KristenAndSara -0.0392 1.23 17.2

Vidyo4 -0.0173 0.71 18.0

Average -0.0516 1.41 19.6

Table 3 shows the performance of the proposed fast

interpolation algorithm as compared to the original algorithm

in HEVC. The proposed algorithm can reduce the coding time

by 19.6% in average. It can also reduce the coding time by

about 10% in average compared to our previous algorithm

which only the interpolation process of 4×8, 4×16, and 12×16

blocks are skipped [11]. The gain of our algorithm is high

because unnecessary small CU size decision has been skipped.

On the other hand, coding efficiency loss is negligible, where

the average coding efficiency loss in term of PSNR is about

0.05 dB. Therefore, the proposed algorithm can efficiently

reduce the coding time while keeping nearly the same RD

performance as with the original algorithm in HEVC. What’s

more, it can also reduce the implementation area cost in the

VLSI design.

3. THE OPTIMIZED INTERPOLATION FILTER VLSI

ARCHITECTURE

3.1 The reused data path of interpolation

For the interpolation process of a 64×64 CU,

2×(64+1)×(64+8)×(8+6)= 131040 bits RAM is required in

total. The area cost will be huge for hardware implementation.
Therefore, a reused three-level architecture for fractional pixel

1107

interpolation is proposed to reduce the area cost for about

131040 bits RAM. Figure 1 shows the data path of the three-

level reused architecture.

MUX

H_F1/4 H_F2/4 H_F3/4

V_F1/4 V_F3/4 V_F1/4 V_F3/4

V_F2/4 V_F2/4

MUX

V_F1/4 V_F3/4

Current Frame Data

Level 1

Level 2

Level 3

A0,0 b0,0

h0,0 j0,0

(a) First round: half-pixel interpolation

MUX

H_F1/4 H_F2/4 H_F3/4

V_F1/4 V_F3/4 V_F1/4 V_F3/4

V_F2/4 V_F2/4

MUX

V_F1/4 V_F3/4

Current Frame Data

Level 1

Level 2

Level 3

A0,0 b0,0

h0,0 j0,0

a0,0 c0,0

f0,0

p0,0 q0,0 r0,0

k0,0

e0,0

n0,0

d0,0 g0,0

i0,0

(b) Second round: quarter-pixel interpolation

Fig.1. The reused data path of interpolation

There are three horizontal filters in the first level. For the

half-pixel interpolation as shown in Fig.1 (a), the filter H_F2/4

is open for the interpolation of half-pixel b0,0 and the other two

(H_F1/4 and H_F3/4) are close in the first round. For the

quarter-pixel interpolation in the second round as shown in

Fig.1 (b), the half-pixels a0,0, b0,0 and c0,0 will be interpolated

by the three filters in Level 1 from A0,0. Level 2 contains four

vertical filters. They work at the second round of quarter-pixel

interpolation process. The quarter-pixels e0,0, p0,0, g0,0 and r0,0

are interpolated by V_F1/4 and V_F3/4 respectively from the

half-pixel a0,0 and c0,0 in the vertical direction. Level 3 also

contains four vertical filters. The half-pixels h0,0 and j0,0 are

interpolated by the two vertical filters V_F2/4 from A0,0 and

b0,0 at the first round. During the second round, the quarter-

pixels i0,0 and k0,0 will be interpolated by the same two vertical

filters V_F2/4. The quarter-pixels d0,0 and n0,0 will be

interpolated by the other two vertical filters V_F1/4 and

V_F3/4 from A0,0 when the horizontal component of MV is

equal to zero; Otherwise the quarter-pixels f0,0 and q0,0 will be

interpolated by the same vertical filters V_F1/4 and V_F3/4

from the half pixel b0,0.

Therefore all the horizontal and vertical filters in the

process of half-pixel interpolation can be reused in quarter-

pixel interpolation and some filter units can be reused for

different quarter-pixel positions. This reused architecture will

greatly reduce the area cost in hardware implementation.

3.2 Memory organization

In the VLSI design, an 8-pixel interpolation unit is applied

to balance the processing time and the hardware efficiency.

Because every PU can be split into multiple 8× blocks, the 8-

pixel interpolation unit can deal with every sub-block in the

processing unit of inter prediction.

SRAM is used to store the input reference pixels. The

maximum processing unit of LPU is 64×64 block and there are

also four extra reference pixels around the processing unit. So

there are eight SRAMs in order to realize the storage of a

72×72 pixel matrix. As the width of processing unit is from 8

to 64, the 72×72 pixel matrix is stored in terms of nine pixel

width separately as shown in Fig. 2. The depth of every

SRAM is 9×8 bit = 72 bits and every bit is the data address of

each line. Based on this organization, only SRAM0 and

SRAM1 are open for 8× processing unit while the others are

close with no data access. When the width of processing unit

is 64, all the SRAMs will be used to store and read the input

pixels.

SRAM7SRAM6SRAM5SRAM4SRAM3SRAM2SRAM1SRAM0

64x64

0

71

…

…

70

1

2

0

71

…

…

70

1

2

0

71

…

…

70

1

2

0

71

…

…

70

1

2

0

71

…

…

70

1

2

0

71

…

…

70

1

2

0

71

…

…

70

1

2

0

71

…

…

70

1

2

4

4

0 71

0

71

Fig.2. Memory organization

3.3 The pipeline interpolation filter engine

 The proposed pipeline filter engine is shown in Fig. 3

where the 8× block module is the basic reused block. As

shown in Fig.3, h_f and v_f are the 8-tap horizontal and

vertical interpolation filters. There are nine 8-tap horizontal

interpolation filters (h_f0~h_f8) and only eight filtered results

among them are selected as the predicted outputs according to

the distribution of half-pixels around the integer-pixels.

1108

h_f0 h_f1 h_f2 h_f3 h_f4 h_f5 h_f6 h_f7 h_f8

v_
f

vfilter

cycle0

cycle1

cycle2

cycle3

cycle4

cycle5

cycle6

cycle7

cycle8

cycle9

h_f v_fInteger pixel

register
Fractional pixel

register

8-tap horizontal

filter

8-tap vertical

filter
Fig.3. The pipeline interpolation filter engine

There are eight shift registers in the vertical interpolation

filter and the output data from the horizontal filter are stored

in these registers sequentially. When the eight registers are

filled with the predicted outputs from the horizontal

interpolation filter, the vertical interpolation filter starts to

work. According to the above processing steps, the 8× block

interpolation engine performs the pipeline filtering

operations and the ultimate interpolation filtered result will

be obtained after one clock cycle.

4. IMPLEMENTATION RESULTS

 The proposed interpolation filter architecture is

implemented in Verilog HDL and synthesized using SMIC

90nm cell library. Table 4 shows the implementation result

of the proposed architecture, including the comparison with

the previous works [4][5][6][7] as well as our previous

architecture[11]. When synthesized with 90nm CMOS

standard library, the total gate count of this design is 37.2k

for supporting 3840×2160@47fps videos and real time

processing with a working clock speed of 240MHz.

In terms of hardware resources, the proposed

architecture can reduce about 52% hardware area compared

to the original HEVC interpolation architecture and 18%

area is reduced compared to the works in [5]. The optimized

hardware architecture proposed in this paper can also reduce

about 42% hardware area compared to our previous work

[11]. Although the works in [6] has eight times greater

parallelism and can work at higher frequencies than the

design in this paper, the amount of logic resources is also 6

times greater. The proposed architecture also allows for the

use of a reduced input buffer so that the memory cost can be

reduced by 131040 bits.

In terms of performance, the throughput of the proposed

architecture is 0.84 pixel/cycle, which is 15% higher than

the works in [7] with 0.73 pixel/cycle, 6% lower than the

works in [4] with 0.89 pixel/cycle for H.264/AVC.

Consequently, the hardware implementation cost of our

architecture is comparable to H.264/AVC.

5. CONCLUSION

High performance VLSI architecture for interpolation in

HEVC is proposed in this paper based on an

implementation-friendly interpolation filter algorithm. The

optimized interpolation filter VLSI architecture only

requires 37.2k gates in a standard 90nm CMOS technology

at an operating frequency of 240MHz. It can support real-

time interpolation filter operation of 3840×2160@47fps

video application.

6. ACKNOWLEDGEMENT

This work was supported in part by the National Natural

Science Foundation of China (60902101), New Century

Excellent Talents in University of Ministry of Education of

China (NCET-11-0824) and Fundamental Research Funds

for the Central Universities (3102014JCQ01057).

Table 4. Result comparison of previous works and proposed architecture

 [4] [5] [6] [7] [11] Proposed

Standard H.264, AVS HEVC HEVC HEVC HEVC HEVC

Technology 0.18um 40nm 90nm 90nm 90nm 90nm

Parallelism 4× 8× 64× 4× 8× 8×

Gates Count (K Gates) 26.3 45.2 211.693 32.496 64.5 37.2

Memory(byte) N/A N/A N/A N/A 0 0

Interpolation execution
time(pixel/cycle)

0.89 N/A N/A 0.73 0.84 0.84

Working Frequency 100MHz 200MHz 400MHz 200MHz 193MHz 240MHz

Application Target 1080p@30fps QFHD@30fps 1080p@30fps QFHD@30fps QFHD@47fps QFHD@47fps

1109

7. REFERENCES

[1] Sullivan G J, Ohm J R, Han W J, et al, “Overview of the high

efficiency video coding (HEVC) standard,” IEEE Transaction
on Circuits and Systems for Video Technology, vol. 22, no. 12,
pp. 1649–1668, Dec. 2012.

[2] J. Ohm and G.J Sullivan, “High efficiency video coding: the
next frontier in video compression [Standards in a Nutshell] ,”
Signal Processing Magazine, IEEE, 2013, 30(1), 152-158.

[3] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T.
Wiegand, “Comparison of the coding efficiency of video
coding standards - including high efficiency video coding
(HEVC),” IEEE Transaction on Circuits and Systems for
Video Technology, vol. 22, no. 12, pp. 1669–1684, Dec. 2012.

[4] D. Zhou and P. Liu, “A Hardware-Efficient Dual-Standard

VLSI Architecture for MC Interpolation in AVS and H.264,”

in IEEE International Symposium on Circuits and Systems,

pp. 2910-2913, May. 2007.

[5] Chao-Tsung Huang, Chiraag Juvekar, Mehul Tikekar, Anantha

P. Chandrakasan, “HEVC Interpolation Filter Architecture for

Quad Full HD Decoding,” in Visual Communications and

Image Processing (VCIP), pp. 1-5, Nov. 2013.

[6] G. Pastuszak, M. Trochimiuk, “Architecture Design and

Efficiency Evaluation for the High-Throughput Interpolation

in the HEVC Encoder,” in 2013 Euromicro Conference on

Digital System Design, pp. 423-428, Sep. 2013.

[7] Guo Z, Zhou D, Guto S, “An optimized MC interpolation

architecture for HEVC,” in IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 1117–1120,

Mar. 2012.

[8] Ercan Kalali, Yusuf Adibelli, Ilker Hamzaoglu, “A

Reconfigurable HEVC Sub-pixel Interpolation Hardware,” in

IEEE Third International Conference on Consumer

Electronics - Berlin, pp.125-128, Sept. 2013.

[9] F. Bossen, "Common test conditions and software reference

configurations," Joint Collaborative Team on Video Coding

(JCTVC) of ITU-T SG16 WP3 and ISO/IEC

JTC1/SC29/WG11, Document: JCTVC-B300, 2nd Meeting:

Geneva, CH, 21-28 July, 2010

[10] G. Bjontegaard, "Calculation of average PSNR difference

between RD-curves," 13th VCEG-M33 Meeting, Austin, TX,

Apr. 2-4, 2001.

[11] Xiaocong Lian, Wei Zhou, Zhemin Duan, Rong Li, “An

efficient interpolation filter VLSI architecture for HEVC

standard,” in 2nd IEEE China Summit and International

Conference on Signal and Information Processing (ChinaSIP

2014), Xi’an, China., pp. 384–388, July. 2014.

1110

