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ABSTRACT 

 

Firstly, an implementation-friendly interpolation filter 

algorithm is proposed in this paper. It can save 19.6% 

processing time on average with negligible coding quality 

degradation. Then based on the proposed algorithm, an 

optimized interpolation filter VLSI architecture, composed of 

the reused data path of interpolation, efficient memory 

organization and the pipeline interpolation filter engine is 

presented to reduce the implement hardware area. The 

resulting design can achieve 240 MHz with only 37.2K gate 

count and support real-time interpolation filter operation of 

3840×2160@47fps video application by using 90nm CMOS 

technology. 

 

Index Terms—HEVC, interpolation filter, VLSI 

 

1. INTRODUCTION 

 

High Efficiency Video Coding (HEVC) is a new video 

coding standard currently being developed jointly by Video 

Coding Experts Group (VCEG) and Moving Picture Experts 

Group (MPEG) in the joint collaborative team on video coding 

(JCT-VC)[1][2]. It provides a significant rate-distortion 

improvement over its predecessor H.264/AVC and can save 

40%-50% bitrates compared to H.264/AVC, especially for 

ultra-high video resolutions [3]. A number of new algorithmic 

tools have been proposed, covering many aspects of video 

compression technology, such as larger coding units, new 

tools and more complex prediction schemes.  

Motion compensation is the key factor for efficient video 

compression. Compensation for motion with fractional-pel 

accuracy requires interpolation of reference pixels. In HEVC, 

three different 8-tap or 7-tap filters are used for the 

interpolation of half-pixel and quarter-pixel positions, 

respectively. Sub-pixel interpolation is one of the most 

computationally intensive parts of HEVC. Compared with the 

6-tap filter used in H.264/AVC [4], the 7-tap and 8-tap filters 

cost more area in hardware implementation and occupy 

37%~50% of the total complexity for its DRAM access and 

filtering. Therefore it is necessary to design dedicated 

hardware architecture for interpolation filter to realize the real-

time processing for high resolutions video. 

There are some previous works focusing on designing 

efficient architecture for HEVC interpolations [5-8]. Huang 

proposed a high-throughput interpolation filter architecture 

and a unified filter combining the 8-tap luma and 4-tap chroma 

filters to optimize area [5]. In [6], a dedicated hardware 

accelerator for interpolation was presented. Although it could 

read eight input samples and produce 64 output samples at 

each clock cycle, its area cost was huge. A sub-pixel 

interpolation hardware only for 4×4 PU size and a 2-D filter 

reuse scheme for sub-block 4×4 were proposed in [7]. But the 

hardware had restricted reconfigurability. In this paper, a fast 

and implementation-friendly interpolation filter algorithm is 

proposed. Then based on the proposed algorithm, an efficient 

interpolation filter VLSI architecture with the reused data path 

and efficient memory organization is presented. 

      The rest of this paper is organized as follows. The 

implementation-friendly interpolation filter algorithm is 

proposed in Section 2. The proposed optimized interpolation 

filter VLSI architecture is presented in Section 3 in details. 

Section 4 shows the implementation results. Finally, this paper 

is concluded in Section 5. 

 

2. PROPOSED INTERPOLATION FILTER 

ALGORITHM 

 

2.1 The implementation-friendly interpolation filter 

algorithm 

 

Like H.264/AVC, mode decisions with motion estimation 

remain among the most time-consuming computations in 

HEVC. In the initial HEVC design, there are four different 

possible partition modes for inter predictions: two square 

partition modes (2N×2N and N×N) and two symmetric motion 

partition (SMP) modes (2N×N and N×2N). As a complement 

to the square-shaped or non-square symmetrically partitioned 

prediction blocks, the asymmetric motion partition (AMP) is 

proposed in HEVC. AMP includes four partition modes: 

2N×nU, 2N×nD, nR×2N and nL×2N, which divide a coding 

block into two asymmetric prediction blocks along the 

horizontal or vertical direction. In HEVC, the size of the 

largest PU is 64×64. So it can be split into a total of 21 

different sizes of sub-PUs. All possible prediction modes are 

traversed.  And the one having the minimum R-D cost will be 

used. 
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According to 8 different possible splittings of PUs, a 4-

pixel interpolation unit and an 8-pixel interpolation unit are 

used in the proposed architecture. The splitting modules for 4-

pixel interpolation unit include 4×8, 4×16, 8×4, 16×4, 12×16 

and 16×12 modes. The 4-pixel interpolation unit is capable of 

processing every sub-block in a coding unit (CU), but it will 

cost more hardware areas and clock cycles. So it is very 

difficult for a 4-pixel interpolation unit to achieve the real-time 

processing of interpolation filter with reasonable computing 

powers. The statistics of possible splittings of PUs in HM 13.0 

with low delay configuration is shown in Table 1. The size 

ranges from 64× to 4×. 64× size includes 64×32 and 64×64 

modes. 32× size includes 32×8, 32×16, 32×24, 24×32 and 

32×32 modes. 16× size includes 16×8, 16×16, and 16×32 

modes. 8× size includes 8×8, 8×16, and 8×32 modes. 4× size 

includes 4×8, 4×16, 8×4, 16×4, 12×16 and 16×12 modes. It 

can be observed from Table 1 that, although the splitting 

modules for a 4-pixel interpolation unit (4× size) are only 

about 3.52% of all possible splittings of PUs, they cost more 

hardware areas and clock cycles in the hardware 

implementation. 
 

Table 1. The inter-prediction splitting modes 

 Class A Class B Class C Class D Class E 

Size Traffic Cactus BasketballDrill Keiba Johnny 

64× 5361 2663 454 88 1703 

32× 9945 5751 937 255 1229 

16× 19654 8994 2307 876 2193 

8× 28408 9261 4232 1409 2098 

4× 2582 502 426 150 97 

Total 65950 26771 8356 2778 7320 

 

Therefore we propose a fast and implementation-friendly 

interpolation algorithm in which the interpolation processing 

with a 4-pixel interpolation unit will be skipped. If we use the 

8-pixel interpolation unit, we will skip the 4× basic blocks' 

(i.e., 4×8, 4×16, 8×4, 16×4, 16×12 and 12×16) interpolation 

operation in HEVC. Compared to the original algorithm, the 

interpolation process of 4×8, 4×16, 8×4, 16×4, 16×12 and 

12×16 sub-PU blocks are skipped in the interpolation. Based 

on the proposed fast interpolation algorithm, we re-arrange the 

classification of PU splitting modules, as shown in Table 2. 

According to the new splitting modules and the proposed fast 

algorithm, we can put the minimum 8× PU modes together to 

realize the interpolation of larger blocks in the VLSI design. 

 
Table 2. The new splitting module in interpolation filtering 

PU module The size of sub-PU 

8× 8×8，8×16，8×32 

16× 16×8，16×16，16×32 

24× 24×32 

32× 32×8，32×16，32×24，32×32，32×64 

64× 64×32，64×64 

 

 

2.2 Experiment results 

In order to evaluate the performance of the proposed 

interpolation algorithm, the algorithm is implemented by using 

the recent HEVC reference software (HM 13.0) and is 

compared with the original algorithm of HEVC in low 

complexity configuration. The performance of the proposed 

algorithm is shown in Table 3. 

The proposed algorithm is evaluated with QPs 22, 27, 32 

and 37 using 14 typical sequences recommended by the JCT-

VC in five resolutions [9]. Computational complexity is 

measured by the consumed coding time. BDPSNR (dB) and 

BDBR (%) are used to represent the average PSNR and bit 

rate difference [10]. "Time save (%)" is used to represent the 

coding time change in percentage. The positive and negative 

values represent increments and decrements, respectively. 
 

Table 3. Results of the proposed algorithm compared to HEVC 

Class Sequence 
BD_PSNR 

[dB] 

BD_Rate 

[%] 

Time save 

[%] 

A 
PeopleOnStreet -0.0529 1.84 21.9 

Traffic -0.0273 0.79 19.4 

B 

BasketballDrive -0.0136 0.60 19.9 

BQTerrace -0.0138 0.83 18.9 
Cactus -0.0299 1.35 19.6 

C 

PartyScene -0.0611 2.84 20.2 

Flowervase -0.0961 1.36 17.1 

BasketballDrill -0.0275 0.77 18.9 

D 

BasketballPass -0.1071 2.46 21.0 

BlowingBubbles -0.1131 2.81 21.0 

Keiba -0.1109 2.31 21.4 

E 
Johnny -0.0314 1.08 17.4 

KristenAndSara -0.0392 1.23 17.2 

Vidyo4 -0.0173 0.71 18.0 

Average -0.0516 1.41 19.6 

       

Table 3 shows the performance of the proposed fast 

interpolation algorithm as compared to the original algorithm 

in HEVC. The proposed algorithm can reduce the coding time 

by 19.6% in average. It can also reduce the coding time by 

about 10% in average compared to our previous algorithm 

which only the interpolation process of 4×8, 4×16, and 12×16 

blocks are skipped [11]. The gain of our algorithm is high 

because unnecessary small CU size decision has been skipped. 

On the other hand, coding efficiency loss is negligible, where 

the average coding efficiency loss in term of PSNR is about 

0.05 dB. Therefore, the proposed algorithm can efficiently 

reduce the coding time while keeping nearly the same RD 

performance as with the original algorithm in HEVC. What’s 

more, it can also reduce the implementation area cost in the 

VLSI design. 

 

3. THE OPTIMIZED INTERPOLATION FILTER VLSI 

ARCHITECTURE 

3.1 The reused data path of interpolation  

For the interpolation process of a 64×64 CU, 

2×(64+1)×(64+8)×(8+6)= 131040 bits RAM is required in 

total. The area cost will be huge for hardware implementation. 
Therefore, a reused three-level architecture for fractional pixel 
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interpolation is proposed to reduce the area cost for about 

131040 bits RAM. Figure 1 shows the data path of the three-

level reused architecture. 

MUX

H_F1/4 H_F2/4 H_F3/4

V_F1/4 V_F3/4 V_F1/4 V_F3/4

V_F2/4 V_F2/4

MUX

V_F1/4 V_F3/4

Current Frame Data

Level 1

Level 2

Level 3

A0,0 b0,0

h0,0 j0,0

 
(a) First round: half-pixel interpolation 
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V_F1/4 V_F3/4 V_F1/4 V_F3/4

V_F2/4 V_F2/4

MUX

V_F1/4 V_F3/4
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Level 3
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d0,0 g0,0

i0,0

  
(b) Second round: quarter-pixel interpolation 

Fig.1. The reused data path of interpolation 

There are three horizontal filters in the first level. For the 

half-pixel interpolation as shown in Fig.1 (a), the filter H_F2/4 

is open for the interpolation of half-pixel b0,0 and the other two 

(H_F1/4 and H_F3/4) are close in the first round. For the 

quarter-pixel interpolation in the second round as shown in 

Fig.1 (b), the half-pixels a0,0, b0,0 and c0,0 will be interpolated 

by the three filters in Level 1 from A0,0. Level 2 contains four 

vertical filters. They work at the second round of quarter-pixel 

interpolation process. The quarter-pixels e0,0, p0,0, g0,0 and r0,0 

are interpolated by V_F1/4 and V_F3/4 respectively from the 

half-pixel a0,0 and c0,0 in the vertical direction. Level 3 also 

contains four vertical filters. The half-pixels h0,0 and j0,0 are 

interpolated by the two vertical filters V_F2/4 from A0,0 and 

b0,0 at the first round. During the second round, the quarter-

pixels i0,0 and k0,0 will be interpolated by the same two vertical 

filters V_F2/4. The quarter-pixels d0,0 and n0,0 will be 

interpolated by the other two vertical filters V_F1/4 and 

V_F3/4 from A0,0 when the horizontal component of MV is 

equal to zero; Otherwise the quarter-pixels  f0,0 and q0,0 will be 

interpolated by the same vertical filters V_F1/4 and V_F3/4 

from the half pixel b0,0.  

Therefore all the horizontal and vertical filters in the 

process of half-pixel interpolation can be reused in quarter-

pixel interpolation and some filter units can be reused for 

different quarter-pixel positions. This reused architecture will 

greatly reduce the area cost in hardware implementation. 

3.2 Memory organization 

In the VLSI design, an 8-pixel interpolation unit is applied 

to balance the processing time and the hardware efficiency. 

Because every PU can be split into multiple 8× blocks, the 8-

pixel interpolation unit can deal with every sub-block in the 

processing unit of inter prediction. 

SRAM is used to store the input reference pixels. The 

maximum processing unit of LPU is 64×64 block and there are 

also four extra reference pixels around the processing unit. So 

there are eight SRAMs in order to realize the storage of a 

72×72 pixel matrix. As the width of processing unit is from 8 

to 64, the 72×72 pixel matrix is stored in terms of nine pixel 

width separately as shown in Fig. 2. The depth of every 

SRAM is 9×8 bit = 72 bits and every bit is the data address of 

each line. Based on this organization, only SRAM0 and 

SRAM1 are open for 8× processing unit while the others are 

close with no data access. When the width of processing unit 

is 64, all the SRAMs will be used to store and read the input 

pixels. 
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Fig.2. Memory organization 

 

3.3 The pipeline interpolation filter engine 

      The proposed pipeline filter engine is shown in Fig. 3 

where the 8× block module is the basic reused block. As 

shown in Fig.3, h_f and v_f are the 8-tap horizontal and 

vertical interpolation filters. There are nine 8-tap horizontal 

interpolation filters (h_f0~h_f8) and only eight filtered results 

among them are selected as the predicted outputs according to 

the distribution of half-pixels around the integer-pixels.  
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h_f0 h_f1 h_f2 h_f3 h_f4 h_f5 h_f6 h_f7 h_f8
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register

8-tap horizontal 

filter
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filter  
Fig.3.   The pipeline interpolation filter engine 

 

There are eight shift registers in the vertical interpolation 

filter and the output data from the horizontal filter are stored 

in these registers sequentially. When the eight registers are 

filled with the predicted outputs from the horizontal 

interpolation filter, the vertical interpolation filter starts to 

work. According to the above processing steps, the 8× block 

interpolation engine performs the pipeline filtering 

operations and the ultimate interpolation filtered result will 

be obtained after one clock cycle. 

 

4. IMPLEMENTATION RESULTS 

 

     The proposed interpolation filter architecture is 

implemented in Verilog HDL and synthesized using SMIC 

90nm cell library. Table 4 shows the implementation result 

of the proposed architecture, including the comparison with 

the previous works [4][5][6][7] as well as our previous  

architecture[11]. When synthesized with 90nm CMOS 

standard library, the total gate count of this design is 37.2k 

for supporting 3840×2160@47fps videos and real time 

processing with a working clock speed of 240MHz. 

In terms of hardware resources, the proposed 

architecture can reduce about 52% hardware area compared 

to the original HEVC interpolation architecture and 18% 

area is reduced compared to the works in [5]. The optimized 

hardware architecture proposed in this paper can also reduce 

about 42% hardware area compared to our previous work 

[11]. Although the works in [6] has eight times greater 

parallelism and can work at higher frequencies than the 

design in this paper, the amount of logic resources is also 6 

times greater. The proposed architecture also allows for the 

use of a reduced input buffer so that the memory cost can be 

reduced by 131040 bits.  

In terms of performance, the throughput of the proposed 

architecture is 0.84 pixel/cycle, which is 15% higher than 

the works in [7] with 0.73 pixel/cycle, 6% lower than the 

works in [4] with 0.89 pixel/cycle for H.264/AVC. 

Consequently, the hardware implementation cost of our 

architecture is comparable to H.264/AVC. 

 

5. CONCLUSION 

 

High performance VLSI architecture for interpolation in 

HEVC is proposed in this paper based on an 

implementation-friendly interpolation filter algorithm. The 

optimized interpolation filter VLSI architecture only 

requires 37.2k gates in a standard 90nm CMOS technology 

at an operating frequency of 240MHz. It can support real-

time interpolation filter operation of 3840×2160@47fps 

video application. 
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Table 4. Result comparison of previous works and proposed architecture 

 [4] [5] [6] [7] [11] Proposed  

Standard H.264, AVS HEVC HEVC HEVC HEVC HEVC 

Technology 0.18um 40nm 90nm 90nm 90nm 90nm 

Parallelism 4× 8× 64× 4× 8× 8× 

Gates Count (K Gates) 26.3 45.2 211.693 32.496 64.5 37.2 

Memory(byte) N/A N/A N/A N/A 0 0 

Interpolation execution 
time(pixel/cycle) 

0.89 N/A N/A 0.73 0.84 0.84 

Working Frequency 100MHz 200MHz 400MHz 200MHz 193MHz 240MHz 

Application Target 1080p@30fps QFHD@30fps 1080p@30fps QFHD@30fps QFHD@47fps QFHD@47fps 
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