
ASIC Implementation of a Computationally Efficient 

Compressive Sensing Detection Method using Least 

Squares Optimization in 45 nm CMOS Technology 
Mohamed Shaban, Tarek Idriss, Haytham Idriss, Magdy Bayoumi, Fellow IEEE 

The Center for Advanced Computer Studies 

University of Louisiana at Lafayette 
Lafayette, Louisiana, USA 

 

 
Abstract—This paper presents a high speed architecture of a 

recently proposed compressive sensing detection method for 

wideband cognitive radios using least squares. Using least 

squares instead of the orthogonal matching pursuit for signal 

recovery reduces the computational complexity where, the index 

search and matrix inverse stages are avoided. The proposed 

architecture is fully pipelined where, 14 clock cycles are required 

to detect 1024-length signal occupying 8 channels from 16 

measurements. The design is implemented in 45 nm CMOS 

operating at 165 MHz. Since, the sensing time for 1024-length 

signal is roughly 84.8 ns, the proposed design offers high speed 

signal detection compared with state of art orthogonal matching 
pursuit architecture.  

Keywords—Cognitive radio; wideband spectrum sensing; 

compressive sensing; least squares; CMOS technology 

I. INTRODUCTION  

   The cognitive radio (CR) was recently introduced as a way 

to enhance spectral efficiency by opportunistically accessing 
licensed frequency bands which are underutilized by licensed 

users. A major component of CR is spectrum sensing [1]. 

Spectrum sensing refers to the process of detecting a spectral 

opportunity in a defined licensed frequency band. A spectral 

opportunity is a frequency channel not being used by a 

licensed user. 

   Recent works have focused on techniques aimed at detecting 

a spectral opportunity within a wide spectrum band of interest 

[2]. However, it is infeasible to realize these techniques as 

they require high resolution analog-to-digital converters 

(ADCs) operating at extremely high sampling rates. In fact, 

the industry fastest 16 bit ADC offers a sampling rate of 250 
MS/s which is far beyond the target sampling rates [3]. 

Furthermore, using commercial low resolution multi-GS/s 

ADCs for wideband spectrum sensing reduces the sensing 

accuracy while high design, computational complexities and 

large memory resources are required. 

   Fortunately, recent developments in mathematics and signal 

processing have contributed to overcoming this bottleneck by 

introducing compressed sensing theory [4]. The objective of 

compressed sensing is to sample an analog signal at a sub-

Nyquist rate comparable to the signal information rate. The 

sampling operation is a trivial linear operation where M 

measurements are acquired by projecting N time samples of 

the received signal into a random domain where M << N. 

Several architectures have been introduced to perform the 

sampling operation such as: random demodulation [6], random 

modulation preintegration [7], parallel segmented compressed 

sensing [8], and compressive channel multiplexing [9]. 

Recovery is realized using computationally complex non-

linear convex optimization (i.e. basis pursuit (BP)) [4] or 

greedy iterative algorithms (i.e. orthogonal matching pursuit 
(OMP) [5]). The complexity of the former and latter methods 

are O(N3) and O(KMN) respectively where K is the sparsity of 

the received signal or the frequency occupation of the 

frequency band of interest [5]. Accordingly, the complexity of 

recovery introduces a bottleneck in the realization of 

compressed sensing method for wideband cognitive radios. 

   Furthermore, since the occupation of the frequency band of 
interest (K) is always unknown, it is impossible to assume an 
appropriate value for the minimum number of required 
measurements M. As a result, compressed sensing cannot be 
directly used when K is unknown. Sequential compressed 
sensing was then introduced where M is estimated [10]. 
However, this approach is computationally intensive as it 
requires the execution of the recovery algorithm several times 
increasing the computational complexity of the design. The 
computational complexity of the recovery is roughly O(MN3) 
and O(KM2N) when BP and OMP are used respectively.  

   In [11], we proposed a computationally efficient compressive 
sensing detection technique for wideband cognitive radios 
when the frequency occupation is unknown using the least 
squares optimization. The computational complexity of 
proposed method recovery is roughly O (L2) which is far lower 
than that of standard as well as sequential compressive sensing 
techniques where, L is the total number of channels [11].  

   In this paper, we propose high speed architectures for both 
recovery and detection operations of [11]. Furthermore, the 
design is implemented in 45 nm CMOS technology. Gate level 
net-list is obtained using Synopsis design vision. Moreover, the 
circuit layout is generated using Cadence encounter.  The area, 
dissipated power, clock frequency, and sensing time are 
measured. 

   The remainder of this paper is organized as follows. Section 
II presents the proposed compressed sensing detection method. 
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Architectures for both recovery and detection are introduced in 
section III. Section IV presents the circuit layout. The 
conclusion and summary are discussed in section V. 

II. COMPRESSIVE SENSING DETECTION METHOD 

In this section we review, the proposed compressive 
wideband spectrum sensing detection method mentioned in 
[11]. The purpose of the proposed method is to compressively 
sense licensed signals within a wide frequency band of interest 
when the frequency occupation is unknown. The proposed 
method offers a reduced computational complexity compared 
to standard as well as sequential compressed sensing methods.  

   The proposed method directly estimates the average of 
individual frequency components for each frequency sub-band 
of the frequency band of interest, instead of estimating the 
nonzero frequency components (K) within the band. For 
example, if the frequency band of interest is divided into L 
frequency sub-bands, L samples are required to be estimated 
where, L << K. As a result, a reduction in the number of 
required measurements M as well as the design complexity of 
the sampling stage is achieved [11]. Moreover, the proposed 
method offers a solution for sensing the frequency band of 
interest when the frequency occupation is unknown.  

   Furthermore, in order to estimate the L samples using given 

M measurements where, M > L (M  CL where, C > 1), least 
squares optimization was introduced to solve the 
overdetermined system with M linear equations and L 
unknown variables. As a result, the computational complexity 
of the recovery stage is reduced; a reduction related to the use 
of fewer number of measurements for recovery, as well as a 
reduction related to the replacement of standard recovery 
algorithms (i.e. BP and OMP) by the least squares 
optimization. Computational complexity of the recovery stage 
is roughly O(L2) [11]. Comparing the recovery complexities of 
the proposed and standard (or sequential) compressive sensing 
methods, the proposed method offers a computationally 
efficient high speed recovery. 

   Moreover, detection was introduced such that the squared 
magnitudes of estimated averages are compared to predefined 
thresholds [11]. Fig. 1 shows the block diagram of the 
proposed method which consists of three stages: sampling 
stage, recovery stage and detection stage.  
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Fig. 1: Proposed compressive sensing detection block diagram 

A. Sampling stage 

   Let x(t) be the received signal by the cognitive radio. 
Generally, x(t) represents the contributions of licensed signals 
transmitted within L frequency sub-bands. Let N×1 vector x be 
the discrete time representation of x(t) when sampled at the 
Nyquist rate. Vector x can then be written as: 

                                            x = z                                         (1) 

where, z is N×1 frequency domain components vector and  is 
N×N discrete Fourier transform coefficients basis matrix. 
Furthermore, we define an average vector g where, 

                                           zg                                           (2) 

where,  is L×N matrix with L orthogonal rows such that each 
row consists of N/L ones corresponding to the location of each 
frequency sub-band within the entire frequency band of 
interest.  
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x is then rewritten as follows: 

                                         x = + g                                        (4) 

where, 
+
 is the pseudo inverse (right inverse) of  (i.e.  

+
 = 

T(T)-1). Furthermore, sampling is done using the 
compressed sensing theory [4] where, the output measurements 
vector y is given as follows: 

                                      y jx =  g                                     (5) 

where,  = j+ and, j is M×N sensing matrix with 
Bernoulli independent identically distributed (i.i.d.) entries. 

B. Recovery stage 

   The recovery stage is introduced to estimate the average of 
frequency components for each frequency sub-band g.   Since, 

 is M×L matrix where, M > L, then “y = g” represents an 
overdetermined system of linear equations [11]. Least squares 
method is then introduced to obtain an approximate estimate of 
g defined as follows,  

                                ĝ
2

2
minarg ygg                            (6) 

   If  is well conditioned, (i.e. L columns of  are linearly 
independent), least squares will be reduced to, 

                                          yg
ˆ                                      (7) 

where,  is the pseudo inverse (left inverse) of  (i.e. + = 

(H )-1H). 

C. Detection stage 

   Since, the purpose of wideband spectrum sensing is to 

decide whether licensed signals are present within the L 

frequency sub-bands or not, a detection stage is introduced 

following the recovery stage where, hypothesis H0 and H1 are 

introduced such that,  
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H1 : kg
2

kĝ                             “Signal is present”  

H0 : kg
2

kĝ                             “Signal is absent” 

where, 
2

kĝ is the squared magnitude of the kth element 

of ĝ and kg is a predefined detection threshold for the kth 

frequency sub-band where, k = 1, 2, ..L [11].  

III. PROPOSED ARCHITECTURE 

   Several implementations for compressed sensing recovery 
using the OMP algorithm were proposed recently in both 
FPGA [12][13] and ASIC (65 nm CMOS technology) [14]. 
One drawback of the OMP implementations [12-14] is that, 
they require two computationally expensive operations (i.e. 
matrix vector multiplication in the index search stage, and 
matrix inverse in the least squares stage). Another drawback is 
that OMP implementations [12-14] assume a real 

representation basis matrix , therefore, these implementations 
are incapable of recovering compressively sampled frequency 
sparse licensed signals. 

   In this paper, we introduce high speed architectures for the 
recovery and detection stages of the proposed compressive 
sensing detection method [11]. First, the proposed design is 
fully pipelined and optimized to reduce the sensing time. 

Second,  is assumed as a complex matrix where frequency 
sparse signals are considered. Third, recovery is realized using 

the least squares method. However, since, matrix  is fixed for 

the design,  is computed offline and stored in 2L registers. 
As a result, the least squares method is reduced to a matrix 

vector multiplication where,  is multiplied by y, therefore, 
2ML multiplications and 2(M-1)L additions are required. A 
reduction in the circuit complexity as well as enhancement in 
the design speed is achieved via eliminating the index search 
stage and matrix inverse operation required by OMP 
implementations [14-16].  

   In this paper, a hardware is implemented for N = 1024, M = 
16, and L = 8. Each sample is represented in 24 bits fixed point 
arithmetic (8 integer bits and 16 fractional bits). Fig. 2 shows 
the proposed architecture for the recovery operation.  
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Fig. 2: Proposed compressive sensing recovery architecture using least squares 

   The proposed architecture realizes the recovery operation 

defined by (7) where, a complex matrix 
 is multiplied by y. 

The architecture consists of a control unit, two 8×1 
multiplexers (MUXs), two 1×8 demultiplexers (DEMUXs) and 

two vector by vector multiplication modules. Since,  is 

8×16 complex matrix,   is then stored in 16 registers (384 
bits wide) where real or imaginary entries of each row are 
concatenated and stored in each register. Also, since y is 16×1 
real vector, then y is also stored in 16 registers (24 bits wide). 

   Each MUX has 8 input ports, each is 384 bits wide. The 
output of each MUX is driven once the multiplexer is triggered 
by the positive edge of the clock signal and the enable as well 
as select signals are set. Each MUX is cascaded by a vector by 
vector multiplication module such that, each MUX output is 
stored into a 384-bit register which is then split into 16 
components (24 bits wide each) in order to be fed as inputs to 
the module.  

   Each vector by vector multiplication module consists of three 
sub-modules, each corresponding to a different pipeline stage. 
The first sub-module performs multiplication via 16 array 
multipliers. The original architecture of an array multiplier is 
composed of 22 carry save adders and a single carry look 
ahead adder. In fact, the use of a carry look ahead adder for 
each array multiplier results in a slower multiplication stage, 
requiring much longer clock period than the rest of the stages. 
However, since the outputs of array multipliers will be added 
together to get the final output of the vector by vector 
multiplication module, we propose an enhancement to the array 
multiplier architecture where, the carries of each array 
multiplier is forwarded to the next stage, therefore, the carry 
look ahead adder is no longer needed. Accordingly, area, 
power consumption and clock delay is reduced. The semi 
products and carries obtained are then stored into 32 registers 
(24 bits wide). 

   In the second sub-module, semi products and carries are 
added using 30 carry save adders to obtain a partial sum and 
carry which are then stored into 2 registers (24 bits wide). The 
partial sum and carry are then added using a single carry look 
ahead adder in the third sub-module.   

Table 1: Time schedule for recovery operation 

Clock 
Cycle 

Operation 

1
st
  Enable and select signals of each MUX and DEMUX are set. 

2
nd

  Each MUX delivers either a row of real entries or a row of 

imaginary entries of 
 to the corresponding vector by vector 

multiplication module. 

3
rd

  Semi products and carries are computed by the first vector by 
vector multiplication sub-module and then stored into 32 24-bit 
registers. 

4
th
  Partial sum and carry are computed by the second vector by 

vector multiplication sub-module and then stored into 2 24-bit 
registers. 

5
th
  Final product is computed by the third vector by vector 

multiplication sub-module and then stored into 16 24-bit registers 
via a DEMUX. 

   The outputs of the vector by vector multiplication modules 
 are stored into 16 registers (24 bits wide) using a DEMUX 

which is triggered by the positive edge of the clock signal. 
Each DEMUX has 8 output ports of 24 bits width. A control 
unit is designed to schedule the transmission of data from each 
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MUX to the corresponding vector by vector multiplication 
module and from each vector by vector multiplication module 
to the corresponding DEMUX. Time schedule of the recovery 
operation is then illustrated in table 1. 

   From table 1, the entire recovery operation will take 40 clock 

cycles till the 8 rows of  are multiplied by y. In order to 
reduce the number of clock cycles and therefore increase the 
speed of the design, the proposed architecture is fully pipelined 

where, rows of  are processed at consecutive clock cycles. 
As a result, the duration of the recovery process is reduced to 
12 clock cycles. 

   Fig. 3 shows the proposed architecture for a single channel of 
the detection operation. Generally, the proposed detection 

architecture consists of L channels. In the lth channel, 
2

lĝ is 

computed where, 2 array multipliers, 2 carry save adders, a 
single carry look ahead adder are employed and then compared 

with a predefined threshold gl using a comparator. Only two 
pipeline stages are required. The output of the first pipeline 
stage (i.e. semi products and carries of array multipliers) is 
stored into 32 registers (24 bits wide) to be further processed 
by the carry save and carry look ahead adders. Furthermore, 
the output of the second pipeline stage (i.e. decision of the L 
detectors dl where, l =1, 2, .. L) is stored into 8 flip-flops. The 
whole operation takes 2 clock cycles.  
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Fig. 3: Proposed detection architecture for a single channel l 

IV. CIRCUIT IMPLEMENTATION 

   Both architectures are implemented in 45 nm CMOS 

technology operating at 1.1 V supply voltage. Architectures 

were synthesized using synopsis design vision while circuit 

layout was generated using Cadence encounter. Fig. 4 shows 

the circuit layout generated for the recovery and detection 

architectures.  

    

                                  (a)                                                       (b) 

Fig. 4: Circuit layout in 45 nm CMOS technology for  
(a) proposed recovery architecture (b) proposed detection architecture 

   Table 2 shows the layout summary for both recovery and 
detection architectures. The total area of the design is 0.61 mm2 
while, the total dissipated power is 163.14 mW. Since, the 

circuit operates at a clock frequency of 165 MHz, the total 
sensing time (recovery and detection time) is 84.8 ns. 

Table 2: Layout summary for proposed recovery and detection architectures 

 Recovery Detection 

Technology 45 nm, 1.1 V 

Area 0.42 mm
2
 0.19 mm

2
 

Power Dissipation 107.79 mW 55.35 mW 

Clock Frequency 165 MHz 

No. of Clock Cycles 12 2 

Delay 72.7 ns 12.1 ns 

      Comparing our results with those of the state of art OMP 
architecture [13], we observe that, using proposed recovery 

and detection architectures for the wideband spectrum sensing 

of 1024-length signals with sparsity (K) varying from 0 to 

1024 is roughly 7.3×103 times faster than using the state of art 

OMP architecture for mere recovery of same length signals 

with K varying from 0 to 36 [13]. Furthermore, the maximum 

clock frequency achieved using proposed architectures (i.e. 

165 MHz) is higher than that achieved by the state of art OMP 

architecture (i.e. 100 MHz) [13]. Accordingly, the proposed 
recovery and detection architectures offer a high speed signal 

detection for wideband cognitive radios when compared with 

the state of art compressed sensing OMP recovery 

architecture. 

V. CONCLUSIONS 

   In this paper, we introduced a high speed architecture and 

ASIC implementation (45 nm CMOS technology) for a 

recently proposed computationally efficient compressive 

sensing detection method for wideband cognitive radios that 

employs the least squares optimization for the recovery stage. 

The design was fully pipelined and the sensing time for 1024-

length signals with unknown frequency occupation was 
measured. It was found that, the proposed method offers a fast 

signal recovery and detection for licensed signals within a 

wide frequency band of interest with unknown frequency 

occupation with respect to signal recovery using state of art 

OMP architecture which assumes prior knowledge of licensed 

signals frequency occupation. 
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