
PARALLEL SOFTWARE IMPLEMENTATION OF RECURSIVE MULTIDIMENSIONAL

DIGITAL FILTERS FOR POINT-TARGET DETECTION IN CLUTTERED INFRARED

SCENES

Hugh L. Kennedy

Defence and Systems Institute, University of South Australia
hugh.kennedy@unisa.edu.au

ABSTRACT

A technique for the enhancement of point targets in clutter is

described. The local 3-D spectrum at each pixel is estimated

recursively. An optical flow-field for the textured background

is then generated using the 3-D autocorrelation function and

the local velocity estimates are used to apply high-pass

velocity-selective spatiotemporal filters, with finite impulse

responses (FIRs), to subtract the background clutter signal,

leaving the foreground target signal, plus noise. Parallel

software implementations using a multicore central

processing unit (CPU) and a graphical processing unit (GPU)

are investigated.

Index Terms— Digital filter, Recursive spectrum,

Optical flow, Whitening, Image processing, Multithreading

1. INTRODUCTION

Multidimensional filters provide a convenient framework for

the extraction of tactical information from imaging sensor

streams. Appropriately designed spatiotemporal digital

filters, like biological vision systems, allow camouflaged

objects to be extracted from cluttered scenes using

foreground/background motion differences. Banks of

velocity-tuned spatiotemporal filters are usually applied

globally to sequences of image frames to separate (i.e.

segment and classify) image regions according to their modes

of motion, or lack thereof [1]-[5].

In this paper, high-pass velocity-tuned prediction-error

filters (PEFs) are instead applied locally to each pixel in an

attempt to suppress (or ‘whiten’) the background clutter and

enhance point-like targets in the foreground (e.g. distant

aircraft). High-order optimal filters offer diminishing returns

when processing image data because the input signal is far

from wide-sense stationary (in space and time), due to

occlusion and discontinuities at object boundaries (i.e.

edges). Therefore, a simple 3-D frequency-sampling method

is adopted here, which avoids the need for the discretization

of analog prototypes [5],[6]. Analytical expressions for the

filter coefficients and frequency response are provided.

Each filter is tuned using the estimated (apparent) velocity

of the background scene which is assumed to be dominated

by heterogeneous textures, with predominantly low spatial-

frequency content (e.g. distant cloud or terrain), possibly

exhibiting non-uniform motion. The latter feature precludes

the use of simple image registration-type techniques. Any

number of optical-flow estimation techniques could have

been employed for this purpose, such as gradient-based [7],

phase-based [8], or block-matching methods (e.g. using the

2-D cross-correlation function) [9]; however, an alternative

approach (using the local 3-D auto-correlation function) is

instead used here [10]. This method was found to reduce the

impact of noise and random variations, through the

consideration of multiple ‘stacked’ frames, rather than simply

a pair of consecutive frames.

A frequency-domain approach significantly reduces

computational complexity by allowing the velocity-

estimation and velocity-filtration stages to operate on a

common spectrum, which is of course separable in all three

dimensions. In previously reported approaches, a 2-D

discrete Fourier transform (DFT) is applied to each new

(spatial) frame using the fast Fourier transform (FFT) as a

batch operation, then a (temporal) linear difference equation

(LDE) is used to filter the 2-D spectrum to create a 3-D

spatiotemporal (DFT/LDE) filter [11].

A somewhat similar approach is adopted here; however to

better accommodate local variation, a 3-D (spatiotemporal)

spectrum is estimated recursively for each pixel using the

surrounding data within a 3-D analysis window. The sliding

DFT (SDFT) is used in the spatial dimensions, which are of

finite extent; whereas a deadbeat observer is used in the

temporal dimension, which is effectively of infinite extent

[12]. Both methods are implemented using filter banks with

finite impulse responses (FIRs).

The SDFT was used for the spatial dimensions because it

has a simple implementation – using a comb-filter cascaded

with a bank of resonators [13]. Accumulated rounding errors

due to pole-zero cancellation on the unit circle are negligible

over the dimensions of a single frame [12].

The deadbeat observer implementation is slightly more

complex and memory intensive as it uses a feedback loop

with integrators in the forward path to drive steady-state

errors to zero, which ensures that rounding errors do not

accumulate over long periods of operation [12],[14].

1086978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

Other approaches to the problem of point-target detection

in cluttered infrared scenes tend to either focus on 1-D

temporal filters [15], or 2-D spatial filters [16],[17]. When 3-

D approaches are considered, different logic is typically

applied in the spatial and temporal dimensions [18]. Use of

multidimensional filters provides a clear and consistent

framework for the joint consideration of both time and space

[6].

The algorithm described in this paper is a preprocessor to

‘whiten’ sensor data that contain highly correlated data. A

threshold is then applied to extract candidate target detections

which may then be processed using a Bayesian tracker, to

maintain continuity of target identity, without an excessively

high false-track rate [19]. The velocity estimate at each pixel

may also be used to assist the track initiation and data

association functions of ‘downstream’ tracking processes.

Alternatively, track-before-detect techniques could be

applied [20]. These methods are known to provide very

impressive SNR improvements for dim targets in noise;

however, they also require the noise to be white and

uncorrelated for satisfactory performance.

As the proposed preprocessor does not identify candidate

target measurements, measurement-to-track data association

is avoided; the processing sequence is therefore independent

of the input data (i.e. the target and clutter density) resulting

in a uniform computational load. Furthermore, the output at

each pixel does not influence the output at nearby pixels,

therefore parallel implementations are feasible. Reasonable

rates of data throughput were achieved by parallelizing the

(C++) software implementation for execution on multiple

cores of the central processing unit (CPU) of a personal

computer. Acceleration using graphics processing units

(GPUs) was also investigated.

 2. FORMULATION

The (monochrome) intensity 𝐼, of the background is

estimated (or ‘synthesized’) at 𝒏 − �́� in the sample domain

via direct convolution using

𝐼(𝒏 − �́�) = ∑ 𝐻(𝒎; 𝒎,́ 𝒗)𝐼(𝒏 − 𝒎)𝑴−1
𝒎=0 (1)

where 𝐻(𝒎; 𝒎,́ 𝒗) are the coefficients of a finite-impulse-

response (FIR) filter, tuned to the velocity 𝒗, with a nominal

group ‘delay’ in each dimension of �́� = [�́�𝑥, �́�𝑦, �́�𝑧]

samples. The image is indexed using 𝒏 = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧] for 𝑛 =

0 … 𝑁 − 1 in the spatial (𝑥, 𝑦) and temporal dimensions (𝑧).

The finite ‘analysis’ window is indexed in the opposite sense,

as per the usual convention, using 𝒎 = [𝑚𝑥, 𝑚𝑦 , 𝑚𝑧] for

𝑚 = 0 … 𝑀 − 1 in each dimension where 𝑀 is odd, i.e. 𝑀 =
2𝐾 + 1. Thus the origin of the analysis window at 𝒎 =
[0,0,0] is at 𝒏 = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧]. The estimated background

intensity 𝐼, is then subtracted from the actual intensity 𝐼, at

𝒏 − �́� to (ideally) yield foreground features plus noise, if the

assumed model used to design the filter holds [10].

The background is assumed to be a band-limited signal in

the spatial dimensions with normalized frequency

(cycles/sample) of |𝑓| ≤ 𝐵 𝑀⁄ where 𝐵 < 𝐾. If only discrete

and uniformly-spaced frequencies are considered i.e. for 𝑘 =
−𝐵 … + 𝐵, then

𝐻(𝒎; 𝒎,́ 𝒗) =
𝑊𝑥𝑊𝑦

𝑀𝑥𝑀𝑦𝑀𝑧
 ×

 𝒟𝑊𝑥
([𝑚𝑥 − �́�𝑥 − 𝑣𝑥(𝑚𝑧 − �́�𝑧)] 𝑀𝑥⁄) ×

 𝒟𝑊𝑦
([𝑚𝑦 − �́�𝑦 − 𝑣𝑦(𝑚𝑧 − �́�𝑧)] 𝑀𝑦⁄) (2)

where 𝒟𝑊 is the Dirichlet kernel of order 𝑊 = 2𝐵 + 1,

defined here as

𝒟𝑊(𝑤) =
sin(𝜋𝑊𝑤)

𝑊sin(𝜋𝑤)
. (3)

Computational efficiency is increased for band-limited

signals, if analysis and filtering are performed in the

frequency domain using

𝐼(𝒏 − �́�) = ∑ ℋ(𝒌; 𝒎,́ 𝒗)𝑆(𝒌; 𝒏)+𝑩
𝒌=−𝑩 (4)

for 𝑘𝑥𝑦 = −𝐵𝑥𝑦 … + 𝐵𝑥𝑦 and 𝑘𝑧 = −𝐾𝑧 … + 𝐾𝑧 and where

ℋ(𝒌; 𝒎,́ 𝒗) and 𝑆(𝒌; 𝒏) are frequency-domain

representations of 𝐻 and a windowed block of 𝐼, which are

both transformed via a DFT using

ℋ(𝒌; 𝒎,́ 𝒗) = ∑ 𝐹∗(𝒎; 𝒌)𝐻(𝒎; 𝒎,́ 𝒗)𝑴−1
𝒎=0 (5)

and

𝑆(𝒌; 𝒏) = ∑ 𝐹(𝒎; 𝒌)𝐼(𝒏 − 𝒎)𝑴−1
𝒎=0 (6)

with

𝐹(𝒎; 𝒌) =
1

√𝑀𝑥𝑀𝑦𝑀𝑧
𝑒

𝑗2𝜋(
𝑘𝑥
𝑀𝑥

𝑚𝑥+
𝑘𝑦

𝑀𝑦
𝑚𝑦+

𝑘𝑧
𝑀𝑧

𝑚𝑧)
 . (7)

Note that the asterisk superscript denotes complex

conjugation. The frequency response of the filter is found by

summing over each of the frequency components comprising

the background

𝒬(𝒇; 𝒎,́ 𝒗) =
1

√𝑀𝑥𝑀𝑦𝑀𝑧

∑ ∑
+𝐵𝑥
𝑘𝑥=−𝐵𝑥

𝑞(𝒇)
+𝐵𝑦

𝑘𝑦=−𝐵𝑦
 (8a)

where

𝑞(𝒇) = 𝑏𝑥𝑏𝑦𝑏𝑧 𝑐𝑥(𝑓𝑥)𝑐𝑦(𝑓𝑦)𝑐𝑧(𝑓𝑧)𝑑𝑥(𝑓𝑥)𝑑𝑦(𝑓𝑦)𝑑𝑧(𝑓𝑧) (8b)

with

𝑏𝑥 = 𝑒
−𝑗2𝜋

𝑘𝑥
𝑀𝑥

(�́�𝑥−𝛥𝑥)
 (8c)

𝑏𝑦 = 𝑒
−𝑗2𝜋

𝑘𝑦

𝑀𝑦
(�́�𝑦−𝛥𝑦)

 (8d)

𝑏𝑧 = 𝑒+𝑗2𝜋(𝑣𝑥𝑘𝑥 𝑀𝑥⁄ +𝑣𝑦𝑘𝑦 𝑀𝑦⁄)(�́�𝑧−𝛥𝑧) (8e)

𝑐𝑥(𝑓𝑥) = 𝑒−𝑗2𝜋𝑓𝑥𝛥𝑥 (8f)

𝑐𝑦(𝑓𝑦) = 𝑒−𝑗2𝜋𝑓𝑦𝛥𝑦 (8g)

𝑐𝑧(𝑓𝑧) = 𝑒−𝑗2𝜋𝑓𝑧𝛥𝑥 (8h)

𝑑𝑥(𝑓𝑥) = 𝒟𝑀𝑥
(𝑓𝑥 − 𝑘𝑥 𝑀𝑥⁄) (8i)

𝑑𝑦(𝑓𝑦) = 𝒟𝑀𝑦
(𝑓𝑦 − 𝑘𝑦 𝑀𝑦⁄) (8j)

𝑑𝑧(𝑓𝑧) = 𝒟𝑀𝑧
(𝑓𝑧 + 𝑣𝑥𝑘𝑥 𝑀𝑥⁄ + 𝑣𝑦𝑘𝑦 𝑀𝑦⁄) (8k)

The frequency-domain filter coefficients ℋ(𝒌; 𝒎,́ 𝒗), are

found by evaluating 𝒬(𝒇; 𝒎,́ 𝒗) at the each of the DFT bins

used to transform 𝐼 in (6), i.e. by substituting 𝒇 =

[𝑘𝑥 𝑀𝑥⁄ , 𝑘𝑦 𝑀𝑦⁄ , 𝑘𝑧 𝑀𝑧⁄] into (8).

The velocity-induced frequency-shift, that tilts the spatial

frequencies out of the 𝑥𝑦 plane (where 𝑓𝑧 = 0) according to

𝑓𝑧 = −𝑣𝑥𝑓𝑥 − 𝑣𝑦𝑓𝑦, results in a plane passing through

frequencies in the 𝑧 dimension that do not necessarily

coincide with the discrete frequency bins at 𝑓𝑧 = 𝑘𝑧 𝑀𝑧⁄ of

the DFT [4]. The Dirichlet kernel of order 𝑀𝑧 in the 𝑧

dimension is therefore required to capture the ‘sidelobes’ that

1087

result when the ‘energy’ of each sinusoidal 𝑥𝑦 component

‘spills’ into adjacent bins due to the misalignment of the

nodes of 𝒟𝑀𝑧
(𝑓𝑧) with the bins at 𝑓𝑧 = 𝑘𝑧 𝑀𝑧⁄ . In contrast,

the nodes of 𝒟𝑀𝑥
(𝑓𝑥) and 𝒟𝑀𝑦

(𝑓𝑦) do coincide with the DFT

bins at 𝑓𝑥 = 𝑘𝑥 𝑀𝑥⁄ and 𝑓𝑦 = 𝑘𝑦 𝑀𝑦⁄ , therefore the Dirichlet

kernel is only used to interpolate the filter response in

between the DFT bins in the spatial dimensions. The 𝑏 factors

in (8) perform the synthesis operation; the 𝑐 factors and the

𝛥𝑥𝑦𝑧 constants compensate for the displacement of the

sample-domain origin from the center of the analysis window

– as ‘displacement’ in the sample domain is ‘modulation’ in

the frequency domain. The modulation required uses 𝛥 =
(𝑀 − 1) 2⁄ in each dimension.

Only the low-band frequencies comprising the

background signal are used for filtering purposes; however,

all ‘measureable’ frequencies are evaluated when the DFT is

computed because high-frequency content is required to

capture edges and other spatial details for reliable optical-

flow determination. Similarly, near-DC frequencies contain

little-to-no useful flow information, therefore spatial

components with 𝑘 = 0 are omitted.

The optical flow field is determined using the local

estimate of the 3-D autocorrelation function. The local

velocity is estimated using �̂�𝑥 = 𝑙𝑥 𝑙𝑧⁄ and �̂�𝑦 = 𝑙𝑦 𝑙𝑧⁄ where

𝑙𝑥 and 𝑙𝑦 are the displacements that maximize 𝑅 in the 𝑙𝑧 = 1

‘slice’. Finer velocity resolution is achieved by evaluating 𝑅

at non-integer (interpolating) displacements. Using 𝑙 ≪ 𝑀 −
1 is recommended to reduce the impact of the assumed cyclic

boundary condition, as zero-padding is not used. To minimize

the impact of point-targets in the foreground on the

background velocity estimate, the spatial extent of the

analysis window also needs to be much larger than the spatial

extent of the target. Recursively smoothing 𝑅 at each pixel

using a temporal first-order filter, with a real pole at 𝛼 (0 <
𝛼 < 1), was also found to be beneficial in this respect.

The power density spectrum for the 𝒌th frequency bin, for

the pixel located at 𝒏 − �́�, is estimated using

𝑃(𝒌; 𝒏) = �́�∗(𝒌; 𝒏)�́�(𝒌; 𝒏). (9)

A Hann window is applied to the high-pass filtered spectrum

to yield �́�. This operation is not required for filtering but it

was found to significantly improve velocity estimation. This

operation is applied as a convolution in the frequency

domain. Even when the windows are separated in each

dimension, this is unfortunately quite an ‘expensive’ process.

The (high-pass filtered) 3-D autocorrelation function is then

evaluated using

𝑅(𝒍; 𝒏) = √𝑀𝑥𝑀𝑦𝑀𝑧 ∑ 𝐹∗(𝒍, 𝒌)𝑃(𝒌; 𝒏)+𝑲
𝒌=−𝑲 . (10)

The velocity estimate is derived from the smoothed version

of 𝑅 (i.e. �́�) where �́�𝑛𝑧
= (1 − 𝛼)𝑅 + 𝛼�́�𝑛𝑧−1.

 3. PARAMETERIZATION

The following filter parameters were used to process the real

and simulated data: 𝐾𝑥 = 𝐾𝑦 = 4, 𝐾𝑧 = 2 (determines filter

kernel dimensions); 𝐵𝑥 = 𝐵𝑦 = 3 (determines filter

bandwidth); �́�𝑥 = 𝐾𝑥 , �́�𝑦 = 𝐾𝑦, �́�𝑧 = 𝐾𝑧 (for a linear phase

filter, but a two frame filter latency); 𝑙𝑥 = 𝑙𝑦 = [−8, −7, … +

7, +8]/4 (for a maximum velocity of 2 pixels per frame and

a velocity grid spacing of 1/4); 𝛼 = 𝑒−1 10⁄ ≅ 0.9 (for low-

gain autocorrelation smoother); 𝑁𝑥 = 𝑁𝑦 = 64 (image

dimensions).

5. IMPLEMENTATION

Various realizations of the proposed whitening filter were

implemented on a personal computer with a 64 bit operating

system and an Intel ® i7-4810MQ CPU @ 2.8GHz with 4

physical cores, each functioning as two logical processors, for

a total of 8 concurrent threads. All realizations gave identical

outputs (considering the numerical precision used) when

processing pre-generated/pre-recorded data.

A MATALB ® algorithm prototype was coded using only

the core MATALB (R2013b) engine (i.e. no toolboxes). With

recursively-generated local spectra and ‘vectorized’ code,

this instantiation achieved a processing rate of 2.3 frames per

second (Hz). Monitoring processor utilization during

execution revealed that the computational load was

distributed uniformly over 8 concurrent threads.

Various C++ instantiations were then coded using Visual

Studio 2012 ®. Single-precision floating-point variables

were used in all cases. The baseline serial instantiation, with

recursive DFT filters, achieved a processing rate of 6.3 Hz.

Using parallel_for loops, provided by the Parallel

Patterns Library (PPL), increased the processing rate to 43.7

Hz by distributing the load over multiple threads on the CPU.

This result is very close to the maximum theoretical speedup

of 8x. Parallelizing the recursive spectrum generation stage

only resulted in a slight speedup. The significant speedup

observed was mainly due to the parallel processing of each

image row during the velocity estimation and background

filtration stages, where each thread has much more work to

do.

Using parallel_for_each loops, provided by the

Accelerated Massive Parallelism (AMP) library, to enable

GPU utilization, was somewhat less gratifying. Language

constraints – such as: no complex types, the need to use

array_view or array containers instead of pointers, a limit

on the maximum number of arrays that can be used, etc. –

meant that substantial re-coding was required. These

constraints also placed an upper limit on the complexity of

the code within the body of each loop, which reduced the total

work that each thread was able to do. As a consequence, the

impact of parallel overheads (e.g. data transfer and

synchronization) was more noticeable. All attempts to

parallelize various parts of the code (e.g. spectrum generation

and/or window application) resulted in processing rates that

were slower than the baseline serial implementation. The

CPU-“integrated” GPU and the external “high-performance”

GPU both gave similar results.

1088

In this particular problem, a GPU implementation

provides the greatest speedup when a naïve non-recursive

approach to the DFT is adopted. Generation of a non-

recursive local spectrum, for each pixel in series, proceeds at

a rate of 0.25 Hz; whereas processing the pixels in parallel

on the GPU progresses at a rate of 5.9 Hz – a speedup of

nearly 24x. For comparison: recursive-DFT processing-rates

for the serial CPU, parallel CPU, and parallel GPU

implementations are 87.7 Hz, 186.6 Hz, and 18.6 Hz,

respectively. Thus the recursive DFT ‘beats’ the parallel GPU

‘to the punch’.

 3. SIMULATION

A synthetic background, translating with a velocity of 𝑣clt =
[1.625,0.625] (pixels per frame), i.e. midway between

velocity ‘bins’, was generated using 25 pseudo-randomly

generated components. The frequency of each component in

each spatial dimension was drawn from a uniform

distribution over the interval 𝑓 = [−2, +2]/9 (cycles per

pixel), with random phase, and a magnitude of 0.1. A DC

offset of 10.0 was added to the background. A foreground

point target with a velocity of 𝑣tgt = [−0.625, −0.375] and

a maximum intensity 1.0 of was then injected. A Gaussian

point-spread function, with a standard deviation of 1 pixel

was used to ‘smear’ the target signal over adjacent pixels. The

target obscured the background (i.e. not additive) and the

target was truncated when its intensity fell below 0.1. Its

initial position was set so that it is located at the center of the

field of view in the final frame. Zero-mean Gaussian noise,

with a standard deviation of 0.1 was then added to the image.

Fig. 1. Simulated data example. Left: raw input data, delayed by two

frames so that it is ‘aligned’ with filter output. Middle: output of the

background prediction filter. Right: output of prediction-error filter

(i.e. the difference between the left and middle images), clearly

showing the foreground target near the center of the frame.

 4. APPLICATION

Fig. 2. Real infrared data example. Post-processed. Left column:

raw input data (delayed by 2 frames); Right column: output of

prediction-error filter. Top & bottom rows: stationary camera

(background motionless); Middle rows: panning camera (target

motionless).

 6. CONCLUSION

Now that transistor densities in silicon chips are approaching

practical limits and processor clock frequencies plateauing,

engineers are increasingly relying on parallel processing to

accelerate digital signal processing applications.

Development in this area is currently progressing rapidly on

two fronts: CPU and GPU. Both are the focus of considerable

investment and manufacturers are competing for dominance.

The most appropriate parallelization path depends on many

factors such as the nature of the problem, the specifications

of the hardware and the approach of the programmer [21]. For

the multidimensional digital filter presented in this paper,

CPU acceleration was found to be optimal, with a near-ideal

speedup of 8x achieved with very little effort. The proposed

filter was found to be very effective for enhancing point-

targets, set against cluttered backgrounds, in infrared image

sequences.

12. REFERENCES

1089

[1] C. J. Kulach, L. T. Bruton and N. Bartley, "Real-time 3-

dimensional recursive digital filter for video signals," in

Proc. Twenty-Ninth Asilomar Conference on Signals,

Systems and Computers, vol. 2, pp. 1001-1005, 30th Oct-

1st Nov. 1995.

[2] J. Chamorro-Martinez, J. Fdez-Valdivia and J. Martinez-

Baena, “A spatio-temporal filtering approach to motion

segmentation,” in Pattern Recognition and Image

Analysis, F. J. Perales, A. J. C. Campilho, N. Perez de la

Blanca, and A. Sanfeliu, Eds., Berlin, Germany:

Springer-Verlag, pp. 193–203, Jun. 2003.

[3] B. Kuenzle and L. T. Bruton, "3-D IIR filtering using

decimated DFT-polyphase filter bank structures," IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 2, pp.

394-408, Feb. 2006.

[4] T. Ueda, K. Fujii, S. Hirobayashi, T. Yoshizawa and T.

Misawa, "Motion Analysis Using 3D High-Resolution

Frequency Analysis," IEEE Trans. Image Processs., vol.

22, no. 8, pp. 2946-2959, Aug. 2013.

[5] T. Schwerdtfeger, J. Velten and A. Kummert, “A

multidimensional wave digital filter bank for video-

based motion analysis”, Multidimensional Systems and

Signal Processing, vol. 25, no. 2, pp 295-311,Feb. 2014.

[6] A. Madanayake, C. Wijenayake, D. G. Dansereau, T. K.

Gunaratne, L. T. Bruton and S. B. Williams,

"Multidimensional (MD) Circuits and Systems for

Emerging Applications Including Cognitive Radio,

Radio Astronomy, Robot Vision and Imaging," IEEE

Circuits Syst. Mag., vol. 13, no. 1, pp. 10-43, Feb. 2013.

[7] I Ishii, T. Taniguchi, K. Yamamoto, T. Takaki, "High-

Frame-Rate Optical Flow System," IEEE Trans. Circuits

Syst. Video Technol., vol. 22, no. 1, pp. 105-112, Jan.

2012.

[8] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz and E. Ros,

"High-Performance Optical-Flow Architecture Based on

a Multi-Scale, Multi-Orientation Phase-Based Model,"

IEEE Trans. Circuits Syst. Video Technol., vol. 20,

no.12, pp. 1797-1807, Dec. 2010.

[9] M. Drulea and S. Nedevschi, "Motion Estimation Using

the Correlation Transform," IEEE Trans. Image

Process., vol. 22, no.8, pp. 3260-3270, Aug. 2013.

[10] H. L. Kennedy “Multidimensional Digital Filters for

Point-Target Detection in Cluttered Infrared Scenes,” J.

Electron. Imaging., vol. 23, no. 6, 063019, Dec. 2014.

[11] A. Choudhury and L. T. Bruton, "Multidimensional

filtering using combined discrete Fourier transform and

linear difference equation methods," IEEE Trans.

Circuits Syst., vol. 37, no. 2, pp. 223-231, Feb. 1990.

[12] H. L. Kennedy, “Digital-Filter Designs for Recursive

Frequency-Analysis,” Aug. 2014, available online at

http://arxiv.org/abs/1408.2294.

[13] E. Jacobsen and R. Lyons, "The sliding DFT," IEEE

Signal Process. Mag., vol. 20, no. 2, pp. 74-80, Mar.

2003.

[14] L. Varga, Z. Kollar and P. Horvath, "Recursive Discrete

Fourier Transform based SMT receivers for cognitive

radio applications," in Proc. Int. Conf. on Syst., Signals

and Image Process., pp. 130-133, 11-13 Apr. 2012.

[15] T. J. Patterson, D. M. Chabries and R. W. Christiansen,

"Detection algorithms for image sequence analysis,"

IEEE Trans. Acoust., Speech, Signal Process., vol. 37,

no. 9, pp. 1454-1458, Sep. 1989.

[16] N. Acito, A. Rossi, M. Diani and G. Corsini “Optimal

criterion to select the background estimation algorithm

for detection of dim point targets in infrared surveillance

systems.” Opt. Eng. 0001, vol. 50, no. 10, 107204-

107204-12 (2011).
[17] Yao Zhao, Haibin Pan, Changping Du, Yanrong Peng,

Yao Zheng, “Bilateral two-dimensional least mean

square filter for infrared small target detection,” Infrared

Phys. Techn., vol. 65, pp. 17-23, Jul. 2014.

[18] Jung Y. and Song T. “Aerial-target detection using the

recursive temporal profile and spatiotemporal gradient

pattern in infrared image sequences,” Opt. Eng. 0001,

vol. 51, no. 6, 066401-1-066401-12 (2012).

[19] B. Ristic; Ba-Tuong Vo; Ba-Ngu Vo and A Farina, "A

Tutorial on Bernoulli Filters: Theory, Implementation

and Applications," IEEE Trans. Signal Process., vol. 61,

no. 13, pp. 3406-3430, Jul. 2013.

[20] S. J. Davey, M. G. Rutten and B. Cheung, "Using Phase

to Improve Track-Before-Detect," IEEE Trans. Aerosp.

Electron. Syst., vol. 48, no. 1, pp. 832-849, Jan. 2012.

[21] G. Teodoro, T. Kurc, J. Kong, L. Cooper and J. Saltz,

"Comparative Performance Analysis of Intel (R) Xeon

Phi (TM), GPU, and CPU: A Case Study from

Microscopy Image Analysis," in Proc. IEEE 28th Int.

Parallel and Distributed Processing Symp., pp. 1063-

1072, May 2014.

1090

