
A HYBRID PARTIAL SUM COMPUTATION UNIT ARCHITECTURE FOR LIST DECODERS
OF POLAR CODES

Jun Lin and Zhiyuan Yan

Department of Electrical and Computer Engineering, Lehigh University, PA, USA

ABSTRACT

Although the successive cancelation (SC) algorithm works
well for very long polar codes, its error performance for
shorter polar codes is much worse. Several SC based list
decoding algorithms have been proposed to improve the error
performances of both long and short polar codes. A signifi-
cant step of SC based list decoding algorithms is the updating
of partial sums for all decoding paths. In this paper, we first
proposed a lazy copy partial sum computation algorithm for
SC based list decoding algorithms. Instead of copying par-
tial sums directly, our lazy copy algorithm copies indices of
partial sums. Based on our lazy copy algorithm, we propose
a hybrid partial sum computation unit architecture, which
employs both registers and memories so that the overall area
efficiency is improved. Compared with a recent partial sum
computation unit for list decoders, when the list size L = 4,
our partial sum computation unit achieves an area saving of
23% and 63% for block length 213 and 215, respectively.

Index Terms— Polar codes, list decoding, partial sum
computation

1. INTRODUCTION

Polar codes [1] are a significant breakthrough in coding the-
ory, since they can provably achieve channel capacity. Several
successive cancelation (SC) based list decoding algorithms
have been proposed to improve the error performances of
both long and short polar codes. An SC list (SCL) decoding
algorithm, recently proposed in [2], performs better than the
SC algorithm. While the SCL algorithm in [2] selects the
output codeword from L candidates, where L is the list size,
based on path metric only, this selection is aided by using
the cyclic redundancy check (CRC) in [3–5]. A CRC-aided
SCL (CA-SCL) algorithm performs much better than the
SCL algorithm at the expense of negligible loss in code rate.
A log-likelihood ratio (LLR) based SCL decoding algorithm
was proposed in [6] to reduce the message memory area of
a SCL or CA-SCL decoder. In [7], we proposed an LLR
based list decoding algorithm with reduced latency for polar
codes. In [8], an increased speed polar list decoder was also
proposed.

Inspired by their superior error performances, the SCL

and CA-SCL list decoder architectures for polar codes were
discussed in [9–11], where the partial sum computation units
were based on registers. When the corresponding block
length is large (e.g. N = 215), the main drawbacks of the
register based partial sum computation architectures are the
area overhead and the power dissipation due to the copying
of partial sums.

In this paper, we first propose a lazy copy partial sum
computation algorithm, which copies only path indices in-
stead of partial sums. We also propose a hybrid partial sum
computation architecture for list decoders of polar codes. Our
architecture employs static RAMs (SRAMs) or register files
(RFs) to reduce the area overhead when N is large. Com-
pared with the partial sum architecture shown in [11], when
the list size L = 4, our partial sum computation unit achieves
an area saving of 23% and 63% for block length 213 and 215,
respectively. It seems that our partial sum computation unit
architecture is more suitable for large block length.

The proposed partial sum computation unit architecture
works for all SC based list decoding algorithms mentioned
above. Compared with the partial sum computation in the
SCL and CA-SCL decoding algorithms [2, 3], the input to
the partial sum computation of the list decoding algorithm
in [7, 8] may be a bit vector instead of a single bit. The lazy
copy scheme proposed here is different from that proposed
in [3], which needs complex array index computation and is
not hardware efficient. Our partial sum computation unit is
based on lazy copy, and is different from those in [9, 11–13],
which are based on direct copy. Besides, the partial sum com-
putation unit architecture was not investigated in [7, 8].

The rest of the paper is organized as follows. In Section 2,
some background information is reviewed. The proposed hy-
brid partial sum computation unit architecture is discussed in
Section 3. The implementation results are shown in Section 4.
At last, the conclusions are drawn in Section 5.

2. BACKGROUND

A generation matrix of a polar code is an N × N matrix
G = BNF

⊗n, where N = 2n, BN is the bit reversal per-
mutation matrix [1], and F =

[
1
1
0
1

]
. Here ⊗n denotes the

nth Kronecker power and F⊗n = F⊗F⊗(n−1). Let uN−10 =
(u0, u1, · · · , uN−1) denote the data bit sequence and xN−10 =

1076978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

(x0, x1, · · · , xN−1) the corresponding encoded bit sequence,
then xN−10 = uN−10 G.

For l = 0, 1, · · · , L− 1 and t = 1, 2, · · · , n, let Cl,t be a
bit matrix of 2n−t× 2 elements: Cl,t[j][0] and Cl,t[j][1] store
a single bit partial sum, respectively, for j = 0, 1, · · · , 2n−t−
1. The partial sums corresponding to decoding path l areCl,n,
Cl,n−1, · · · , Cl,1 [2].

For the list decoder architectures in [9–11], all partial
sums are stored in registers and the partial sums of decoding
path l′ are copied to decoding path l when decoding path
l′ needs to be copied to decoding path l. More specifically,
Cl′,t is copied to Cl,t for t = 1, 2, · · · , n. The partial sum
computation unit (PSCU) in [9] and [10] needs L(N −1) and
L(N2 −1) single bit registers to store partial sums, whereN is
the code length and L the list size. Thus, for large N , the reg-
ister based PSCU architectures [9, 10] are inefficient for two
reasons. First, the area of the PSCU is linearly proportional
to N . For large N , the area of PSCU is high since registers
are usually area demanding. Second, the power dissipation
due to the copying of partial sums between different decoding
paths is high when N is large.

3. PROPOSED HYBRID PARTIAL SUM
COMPUTATION UNIT

3.1. Lazy copy partial sum computation

In order to simplify the copy operations, a lazy copy par-
tial sum computation (LCPC) algorithm is proposed in Algo-
rithm 1, where pl[t] (l = 0, 1, · · · , L−1 and t = 0, 1, · · · , n)
is a list index reference. v denotes a node from the decoding
tree [7, 14] of a polar code. tv denotes the layer index [7] of
the node v. IDX1 denotes the index of the last leaf node of
node v. Let (Bn−1, Bn−2, · · · , B0) denote the binary rep-
resentation of IDX1, where Bn−1 is the most significant bit.
Ie = n− (j + 1), where j is an integer such that Br = 0 for
r ≤ j. If B0 6= 0, Ie = n.

In order to support the reduced latency list decoding algo-
rithm in [7], for a round of partial sum computation, the input
is a constituent codeword [7, 14] instead of a single binary
bit [2, 9]. Suppose a constituent codeword, Cv,l, sent from or
received by node v for decoding path l is computed, then the
corresponding partial sum computations are needed. Cv,l has
2n−tv bits. When path l′ needs to be copied to path l, the in-
dex references are first copied before the partial sum compu-
tation shown in Alg. 1 is performed. For t = tv, tv−1, · · · , 0,
pl′ [t] is copied to pl[t]. If a node v receives a constituent code,
pl[tv] = l.

If a node v sends a constituent code Cv,l, it is stored in
(Cl,tv [0][0], Cl,tv [1][0], · · · , Cl,tv [2n−tv][0]), and no fur-
ther partial sum computations are needed. If a node v re-
ceives a constituent code Cv,l, it is first stored in (Cl,tv [0][1],
Cl,tv [1][1], · · · , Cl,tv [2n−tv][1]), and the remaining partial
sum computations are performed with the proposed LCPC

Algorithm 1: LCPC Algorithm
input : Ie, tv

1 for t = tv − 1 to Ie do
2 for k = 0 to 2n−t−1 do
3 if t == Ie then
4 Cl,t[2k][0] =

Cpl[t+1],t+1[k][0]⊕ Cl,t+1[k][1]
5 Cl,t[2k + 1][0] = Cl,t+1[k][1]
6 pl[t+ 1] = pl[t] = l

7 else
8 Cl,t[2k][1] =

Cpl[t+1],t+1[k][0]⊕ Cl,t+1[k][1]
9 Cl,t[2k + 1][1] = Cl,t+1[k][1]

10 pl[t+ 1] = l

algorithm in Alg. 1, where Ie ≤ tv − 1.

3.2. Proposed partial sum computation unit architecture

In order to overcome the area and power overhead when N
is large, a hybrid partial sum computation unit (HPSU) archi-
tecture is proposed based on two improvements: (a) part of
partial sums are stored in memories, while others are stored
in registers, (b) the copying of partial sums is avoided by only
copying list index matrices. The proposed HPSU consists of
L partial sum computation units. The top architecture of the
proposed PSCU for decoding path l, shown in Fig. 1(a), is
described as follows.

(a) For block lengthN = 2n, the proposed PSCU consists
of n stages, where the first n−m+1 stages is a binary tree of
the unit processing elements [6,15] (PEs) shown in Figs. 1(b)
and 1(c), where m is an integer. Stage t (t > m) has 2n−t

PEs. Each of the remainingm−1 stages has the same circuit.
(b) Two types of PEs can be used in the PE tree in

Fig. 1(a). Suppose the maximal length of the constituent
codeword that is decoded instantly or by the proposed LMLD
algorithm in [7] is 2µ, then stage t (t > n− µ) employs only
type-I PEs. The other stages in the PE tree employ type-II
PEs.

(c) Compared to the type-II PE, the type-I PE has an extra
data load unit. For PEl,t,j within stage t, the binary outputs,
ol,t,2j and ol,t,2j+1, are connected to bl,t−1,2j and bl,t−1,2j+1,
respectively.

(d) BMl,t (t 6 m − 1) is a bit memory with 2n−t

T words,
where each word contains T bits. T is the number of process-
ing elements belonging to a decoding path in a partial parallel
list decoder.

(e) The connector module (CN) has two T -bit inputs and
two T -bit outputs. The connections between the outputs and

1077

PEl,n-2,0

PEl,n-2,1

PEl,n-2,2

PEl,n-2,3

PEl,n-1,0

PEl,n-1,1

PEl,m,0

PEl,m,1

PEl,m,2

PEl,m,q

PEl,n,0
...
...
...
...
...
...

... ...

CN CNBMl,m-1 CN...BMl,m-2 BMl,1

...

T

T

T

T

T

T

Sl,m-1 Ql,m-1 Ml,m-1 Sl,m-2 Ql,m-2 Ml,m-2 Sl,1 Ql,1 Ml,1
T

T

T T T

T

T T

T

Xl

stage n stage n-1 stage n-2 stage m stage m-1 stage m-2 stage 1

D
1

1

D
1

LZt

1

1 1 1 1 1 1

ol,t,2j

ol,t,2j+1

bl,t,j

sl,t,j ql,t,j
ml,t,j

ol,t,2j

ol,t,2j+1

1

1

1

1

sl,t,j ql,t,j
ml,t,j

bl,t,j

cl,j

1

1

1
1

0

LDt
ENt ENt

(a)

(b) (c)

Data Load Unit

CNT

T

T

T

I0
I1

O0

O1

(d)

1
0

1
0

1
0

selm-1 selm-2 sel1

Fig. 1. (a) Top architecture of the proposed PSCU. (b) Type-I PE. (c) Type-II PE. (d) Inputs and outputs of the CN.

inputs are given by
O0[2j] = I0[j]⊕ I1[j] 0 6 j < T/2
O0[2j + 1] = I1[j] 0 6 j < T/2
O1[2j − T] = I0[j]⊕ I1[j] T/2 6 j < T
O1[2j + 1− T] = I1[j] T/2 6 j < T

(1)

(f) For each PE, ml,t,j in Figs. 1(b) and 1(c) is the output
of an L-to-1 multiplexor whose inputs are q0,t,j , q1,t,j , · · · ,
qL−1,t,j . For each CN, Ml,t is the output of an L-to-1 array
whose inputs are Q0,t, Q1,t, · · · , QL−1,t. These multiplexors
are not shown in Fig. 1 for simplicity.

The proposed HPSU is derived from Alg. 1. For de-
coding path l, a round of partial sum computation is trig-
gered once a constituent codeword Cv,l is decoded, where
Cv,l = (cl,0, cl,1, · · · , cl,Nc−1) and Nc = 2n−tv is the length
of the underlying constituent codeword. Suppose partial sums
(Cl,t[0][0], Cl,t[1][0], · · · , Cl,t[2n−t − 1][0]) will be com-
puted, where t = Ie as shown in Alg. 1. The partial sum
computation can be described as follows.
• For decoding path l, only Cl,tv , Cl,tv−1, · · · , Cl,t are

involved in the partial sum computation.
• For l = 0, 1, · · · , L − 1 and k = n, n − 1, · · · , 0, let

Cl,k,0 and Cl,k,1 denote two partial sum sets, where

Cl,k,0 = (Cl,k[0][0], Cl,k[1][0], · · · , Cl,k[2n−k][0]),
Cl,k,1 = (Cl,k[0][1], Cl,k[1][1], · · · , Cl,k[2n−k][1]).

• For k = tv−1 to t−1, Cl,k,1 is updated in serial during
the partial sum computation. Here, Cl,tv,1 is initialized by the
input constituent codeword Cv,l, where Cl,tv [j][1] = cl,j for
j = 0, 1, · · · , 2n−tv .
• For k = tv to t − 1, Cl,k,0 remains unchanged during

the current partial sum computation. However, Cl,t,0 will be
updated and used for the following LLR computation.

Let n = 4, t = 1 and tv = 3, the computation of partial
sum sets Cl,1,0 is shown in Fig. 2, where the partial sums in

shaded boxes will be updated and the partial sums in dash
line boxes remain unchanged. Without loss of generality, we
assume that the computation of Cl,1,0 for decoding path l is
based on partial sums within path l to simplify the discussion.
The detailed computation is shown as follows.
• Cl,3,1, which contains two partial sum bits, is first ini-

tialized with the input constituent codeword.
•Cl,2,1 is computed based on the XOR network shown in

Fig. 2.
• The target partial sum set Cl,1,0 is computed once Cl,2,1

is updated.

Cl,2[0][0]

Cl,2[0][1]

Cl,2[1][0]

Cl,2[1][1]

Cl,2[2][0]

Cl,2[2][1]

Cl,2[3][0]

Cl,2[3][1]

Cl,3[0][0]

Cl,3[0][1]

Cl,3[1][0]

Cl,3[1][1]

Cl,4[0][0]

Cl,4[0][1]

Cl,1[0][0]

Cl,1[1][0]

Cl,1[2][0]

Cl,1[3][0]

Cl,1[4][0]

Cl,1[5][0]

Cl,1[6][0]

Cl,1[7][0]

: XOR operation

Fig. 2. Schedule of partial sum computation when n = 4,
t = 1 and tv = 3

For decoding path l, stage t of the proposed PSCU stores
only Cl,t,0. When t > m, the single bit register D within
PEl,t,j stores Cl,t[j][0] for j = 0, 1, · · · , 2n−t. When t < m,
(Cl,t[0][0], Cl,t[1][0], · · · , Cl,t[2n−t− 1][0]) are stored in the
bit memory BMl,t, where the k-th word stores (Cl,t[T (k −
1)][0], Cl,t[T (k− 1)+ 1][0], · · · , Cl,t[T (k− 1)+T − 1][0]).

For the proposed HPSU, the schedule of the computation
of Cl,t,0 depends on t. The detailed computation schedule is
shown as follows.

(1) The decoded constituent codeword for decoding path l
is fed into the corresponding PSCU. Suppose the length of the

1078

constituent codeword is Nc = 2n−tv . If the constituent code-
word is from a rate-1 or ML node [7], then LDtv in Fig. 1(b)
is set to 0 to let the 2-to-1 multiplexor choose the constituent
codeword input. Meanwhile, LZtv is set to 1. If the con-
stituent codeword is from a rate-0 node [7], LZtv is set to 0,
since the corresponding constituent codeword is an all zero
vector. LDt and LZt for t 6= tv are both set to 1.

(2) When t > m, all 2n−t partial sums belonging to Cl,t
are computed in one clock cycle. For stage k with tv > k > t,
ml,k,j shown in Fig. 1(b) and (c) is connected to qpl[k],k,j due
to the use of the lazy copy partial sum computation shown in
Alg. 1, where pl[k] is a reference index. The partial sum out-
put sl,t,j is just the updated Cl,t[j][0] for j = 0, 1, · · · , 2n−t.

(3) When t < m, the partial sums are generated in a
partial-parallel way. Since there are only T PUs for each de-
coding path, it needs at most T partial sums per clock cy-
cle [9, 11]. Hence, at most T partial sums are needed during
each clock cycle.

Considering the partial sum computation shown in Fig. 2,
suppose Cl,3,0, Cl,2,0 and Cl,1,0 are stored in bit memory
BMl,3, BMl,2 and BMl,1, respectively. Suppose T = 2, the
partial parallel computation of the Cl,1,0 is shown in Fig. 3.
For n = 4, t = 1 and tv = 3, it takes 24−1

2 = 4 clock
cycles to compute all 8 partial sums within Cl,1,0. For the
PCSU architecture shown in Fig. 1, suppose Sl,k, which has
T partial sums, is updated, the CN will generate 2T partial
sums.

Cl,3[0][0] Cl,3[1][0]

Cl,1[0][0]
Cl,1[1][0]

Cl,1[2][0]
Cl,1[3][0]

Cl,1[4][0]
Cl,1[5][0]

Cl,1[6][0]
Cl,1[7][0]

Cl,2[0][0] Cl,2[1][0] Cl,2[2][0] Cl,2[3][0]

Ql,3

Ql,2

Sl,1

Sell,3

Sell,2

clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Fig. 3. Partial parallel schedule of the partial sum computa-
tion example when n = 4, t = 1 and tv = 3

Compared to the partial sum computation architectures
in [9, 10], the proposed HPSU architecture has advantages in
the following two aspects.

(1) The proposed HPSU is a scalable architecture. The
PSCU architectures in [9,10] require L(N −1) and L(N/2−
1) single bit registers, where N = 2n is the block length.
Hence, they will suffer from excessive area overhead when
the block length N is large. The proposed HPSU stores
L(N − 1) bits and most of these bits are stored in RFs or
SRAMs, which are more area efficient than registers.

(2) The architectures in [9, 10] employ direct copying,
which copies partial sums of a decoding path to another de-
coding path. In contrast, the proposed HPSU employs the
lazy copy: it copies only index references. We define the

copying of a single bit from one register to another as a single
copy operation. Hence, when decoding path l′ needs to be
copied to path l, the PSCU in [10] requires N1 = 2n−1 − 1
copy operations, while the PSCU with lazy copy needs only
N2 = (n + 1) log2 L copy operations. Since the value of L
for practical hardware implementation is small, our lazy copy
needs much fewer copy operations than direct copy.

4. HARDWARE IMPLEMENTATION RESULTS

In this paper, whenL = 4 and T = 128, forN = 213 and 215,
the proposed hybrid partial sum computation unit architecture
is implemented with m = 3 and m = 5, respectively, under
a TSMC 90nm CMOS technology. Our partial sum compu-
tation unit consumes an area of 0.779mm2 and 1.31mm2 for
N = 210 and N = 215, respectively.

To the best of our knowledge, those decoder architectures
in [9, 11–13] are the only for SC based list decoding algo-
rithms of polar codes. However, in [9, 12, 13], the partial
sum computation unit architecture was not discussed in de-
tail and the implementation results on the PSCU alone are not
shown. Hence, we compare our proposed PSCU with that
in [11]. When L = 4, the partial sum unit architecture in [11]
for N = 213 and 215 consumes an area of 1.011mm2 and
3.63mm2, respectively, under the same CMOS technology.
All PSCUs are synthesized under a frequency of 500MHz.
Our PSU achieves an area saving of 23% and 63% for block
length 213 and 215, respectively.

For the list decoders in [11], the area of the PSCU takes
about 10% of the overall decoder area for a polar code of
block length N = 210. This percentage will increase for a
larger block length since the area of the register based PSCU
increases more quickly than the rest of a list decoder. Thus,
while our proposed PSCU will lead to area and energy saving
for both long and short polar codes, the saving will be more
significant for longer polar codes. Besides, the area saving
also depends on T , since each bit memory could be imple-
mented with an RF or a SRAM. As T increases, the depth of
a bit memory decreases. As a result, the area efficiency (to-
tal area normalized by total stored bits) decreases as shown
in [11, Table I]. The area saving does not depends on L.

By replacing the registers with memories, our PSCU does
not introduce extra clock cycles for semi-parallel list decoder
architectures [9,11] of polar codes. However, the critical path
delay of our PSCU increases compared with that in [9, 10].

5. CONCLUSION

In this paper, a lazy copy partial sum computation algorithm is
proposed. Based on this algorithm, a hybrid partial sum com-
putation unit architecture is also proposed. Compared with
existing architectures, our architecture is more area efficient
and energy efficient by eliminating the copy of partial sums.

1079

6. REFERENCES

[1] E. Arıkan, “Channel polarization: a method for
constructing capacity-achieving codes for symmetric
binary-input memoryless channels,” IEEE Trans. Info.
Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in
Proc. IEEE Int. Symp. on Information Theory, St. Pe-
tersburg, Russia, Jul. 2011, pp. 1–5.

[3] I. Tal and A. Vardy, “List decoding of polar codes,” in
http://arxiv.org/abs/1206.0050.

[4] K. Niu and K. Chen, “CRC-aided decoding of polar
codes,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1668–
1671, Oct. 2012.

[5] B. Li, H. Shen, and D. Tse, “An adaptive successive
cancellation list decoder for polar codes with cyclic re-
dundancy check,” IEEE Commun. Lett., vol. 16, no. 12,
pp. 2044–2047, Dec. 2012.

[6] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg,
“LLR-based successive cancellation list decoding of po-
lar codes,” in Proc. IEEE Int. Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), Florence,
Italy, May 2014, pp. 3903–3907.

[7] J. Lin, C. Xiong, and Z. Yan, “A reduced latency list de-
coding algorithm for polar codes,” in Proc. IEEE Work-
shop on Signal Processing Systems (SiPS), Belfast, UK,
2014.

[8] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J.
Gross, “Increasing the speed of polar list decoders,”
in Proc. IEEE Workshop on Signal Processing Systems
(SiPS), Belfast, UK, 2014.

[9] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross,
and A. Burg, “Hardware architecture for list successive
cancellation decoding of polar codes,” IEEE Trans. Cir-
cuits Syst. II, Exp. Briefs, vol. 61, no. 8, pp. 609–613,
Aug. 2014.

[10] J. Lin and Z. Yan, “Efficient list decoder architecture for
polar codes,” in Proc. IEEE Int. Symp. on Circuits and
Systems (ISCAS), Melbourne, Australia, Jun. 2014, pp.
1022–1025.

[11] J. Lin and Z. Yan, “An efficient list decoder architecture
for polar codes,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., 2015, to appear.

[12] C. Zhang, X. Yu, and J. Sha, “Hardware architecture
for list successive cancellation polar decoder,” in Proc.
IEEE Int. Symp. on Circuits and Systems (ISCAS), Mel-
bourne, AU, Jun. 2014, pp. 209–212.

[13] B. Yuan and K. K. Parhi, “Low-latency successive-
cancellation list decoders for polar codes with multibit
decision,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., to appear.

[14] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified
successive-cancellation decoder for polar codes,” IEEE
Commun. Lett., vol. 15, no. 12, pp. 1378–1380, Dec.
2011.

[15] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross,
“A semi-parallel successive-cancellation decoder for po-
lar codes,” IEEE Trans. Signal Process., vol. 61, no. 2,
pp. 289–299, Jan. 2013.

1080

