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ABSTRACT 

 

The Fast Fourier transform (FFT) is an important 

operation in digital signal processing applications. In 

applications such as biomedical signal processing, the 

signals are real. The real-valued signals exhibit conjugate 

symmetry, giving rise to redundant values in the outputs. 

This property can be exploited to reduce arithmetic 

computations, area and power consumption. This paper 

presents hardware architectures for computing real FFT 

that exploits this conjugate symmetry property where the 

inputs are processed in a serial manner. This is facilitated 

by pushing the twiddle factor values across various 

butterfly stages. In this paper, two different serial FFT 

architectures are presented: one using real and the other 

using hybrid datapaths. These architectures process one 

sample per clock cycle and are well suited for low-

sample-rate applications such as biomedical. These 

architectures are also modified so that two independent 

computations can be interleaved in the same datapath. The 

advantage of interleaving is reduction in area, and is 

attractive for applications where FFT computation of two 

independent real signals is required. 
 

Index Terms – FFT, Real FFT, Serial Processing, 

Interleaving, Real Datapath, Hybrid Datapath 
 

1. INTRODUCTION 

 

Fast Fourier transform is used extensively in many signal 

processing applications. FFT architectures are based on 

the most widely used Cooley-Tukey algorithm [1]; this is 

a divide and conquer algorithm that recursively transforms 

a DFT of size N = N1.N2  into two smaller DFTs of 

sizes N1 and N2, along with O (N) multiplications 

referred to as twiddle factors. In general, FFT engines 

operate over complex inputs and the butterflies used in 

these architectures also process complex samples.  

There has been an increasing interest in FFT 

computation for real valued signals in recent years. Many 

of the biomedical signals such as electrocardiogram 

(ECG) and electroencephalogram (EEG) are real. Several 

architectures have been recently proposed for computing 

real FFT. In these architectures, nearly half the 

computations are eliminated. The RFFT architectures [2]-

[7] use either fully-real or hybrid data paths. A real 

butterfly accepts only two real inputs as opposed to a 

complex butterfly that processes four real values 

corresponding to two complex inputs. Although a real 

datapath based architecture minimizes the number of 

samples that are computed at the end of each FFT stage, 

these architectures require more area and power compared 

to architectures based on hybrid data paths. Parallel real 

FFT architectures using real and hybrid data paths have 

been presented in [7] and [2], respectively. These 

architectures process multiple consecutive samples every 

clock cycle, and achieve full hardware utilization with 

respect to the butterflies as well as the delay elements. 

The main objective of this paper is design of serial real 

FFT architectures where area is a main constraint and 

sample rates required are very low. Examples of these 

applications include processing of ECG, EEG, or heart 

sound. Typically sampling rates in these applications 

rarely exceed 1 kHz. Often processing of signals from 

multiple channels or electrodes is of interest. Serial 

architectures for computing complex FFT have been 

presented in [8]; however, no architecture has been 

presented for computing real FFT in a serial manner 

where one sample is processed every cycle. In these 

architectures, the butterflies are half-utilized; however, the 

delay elements are fully utilized. Serial architectures for 

computing real FFT of two independent channels are also 

presented using both real and hybrid datapaths. It is 

shown that the area overhead for interleaving two 

channels is less than 20% compared to without 

interleaving. 

The rest of this paper is organized as follows. Section 

2 reviews different FFT architectures implemented based 

on Cooley-Tukey algorithm. The proposed serial RFFT 

implementations are presented in Section 3. Section 4 

presents comparisons of hardware area and power 

consumption of the proposed serial architectures. The 

conclusions are presented in Section 5.    

  

2. REVIEW OF FFT ARCHITECTURES FOR 

REAL INPUTS 

 

2.1. L- Parallel  FFT  

 

The level of parallelism determines the number of inputs 

that a single stage can process in a single cycle. In most 

cases, it is a design choice that one makes while 

formulating the folding factor for the FFT flow graph. 

Sometimes, this leads to underutilization of hardware 
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components which can be seen in [3] where the folding 

set used to design the hardware contains null operations. 

However, as described in [3], the folding set can be 

modified such that the null operations can be replaced 

with useful calculations.  

  

2.2. Radix 2,22 & 23 FFT 

 

The radix values used for designing an FFT architecture 

can play a significant role in reducing the hardware. The 

number of complex multipliers required depends on the 

radix chosen. For example, if the number of multipliers 

required in a radix-2 implementation is N, then the 

number of complex multipliers required for radix-22 and 

radix-23 are N/2 and N/4, respectively. The area benefits 

for higher radices are significantly higher compared to 

lower radices. 

      

2.3. Datapath style – Fully-Real, Fully-Complex and 

Hybrid 

 

The datapaths chosen for FFT architectures also have 

impact on area and power consumption. For real inputs, a 

complex/hybrid datapath leads to a large area penalty; 

however, the latency of these architectures is less than that 

of a fully-real datapath [7]. In addition, there has to be a 

real-imaginary combiner circuit at the output for a fully-

real datapath.   

Another major disadvantage with fully-real datapath is 

that it requires more complex multipliers whereas in 

complex and hybrid datapaths, there is more flexibility in 

pushing the twiddle factors across the butterfly stages and 

replace complex multipliers with simple multipliers.  

 

3. PROPOSED RADIX-2 SERIAL FFT 

ARCHITECTURES 

 

The flow graph, shown in Fig. 1, represents decimation-

in-frequency (DIF) FFT computation for real inputs. The 

unnecessary computations for real inputs, as highlighted 

in the figure, are avoided by removing their calculations 

from the datapath. Each line in the flow graph represents 

two physical wires, one for carrying the real part of a 

computation value and the other for the imaginary part. 

However, when the inputs are real, certain lines in the 

flow graph can use a single wire, i.e., either real or 

imaginary part of a value.  Complex values are generated 

only when a real value passes through a complex 

multiplier. This can be seen in Fig. 1 where lines between 

bold dots represent complex data values and normal lines 

represent real values. Thus,  when  folding, instead of  

placing null operations, useful computations can be 

carried out by splitting real and imaginary parts of a 

complex value and expanding the imaginary part to fill the 

removed part. Since real and imaginary parts of a complex 

value traveling along different routes have to be scaled by 

the same twiddle factor value after each butterfly stage, 

additional delay elements as described in [7] are required 

as part of the control circuit.  

  

3.1. Fully-Real Serial FFT Datapath 

 

The proposed fully-real RFFT structure is shown in Fig. 

2. The feedback in the architecture reduces the number of 

delays and improves the hardware utilization efficiency of 

the delays to 100%, similar to the serial complex FFT 

architectures. For an N point RFFT, the block marked in 

Fig. 2 gets repeated. The last stage multiplier requires 

only multiplication by W2 which can be computed using 

simple addition and scaling operations. A canonical 

signed digit multiplier [9] can be used for this purpose. A 

butterfly, at any cycle, produces two outputs and one of 

them is fed back to the delay elements, so that a serial     

data-flow is realized. The data that is sent back to the 

delay elements later passes through the butterfly without 

any operations. For this purpose, a provision for directly 

bypassing the input to the output (bypassing) using a 

multiplexer structure is incorporated into the butterfly as 

shown in Fig. 3. The same bypassing is also provided for 

the multiplier block. 

In order to synchronize data in accordance with the 

timing, multiplexers, demultiplexers, switches and delay 

elements are used. Two types of de-multiplexers (D1 & 

D2), multiplexers (M1 & M2) and switches (S1 & S2) are 

used as shown in Fig. 4. Control signals for these blocks 

are shown in Table I. For an N-point RFFT with n stages, 

all the control signals can be generated using a single n-bit 

counter with simple combinational logic. For each stage 

of the RFFT containing M delay elements, the control 

signals follow a period of 2M and 4M. 

 The following folding set is used for a 16 point Fully-

Real FFT design with 1 stage pipelining between stages. 

   

A={ ɸ,ɸ, ɸ,ɸ ,ɸ,ɸ, ɸ,ɸ, A0, A1, A2, A3, A4, A5, A6, A7}  

B={B3,ɸ,ɸ,ɸ,ɸ,B4_p,B5_p,B6_p,B7_p,ɸ,ɸ,ɸ,ɸ,B0,B1,B2}  

C={C0,C1,ɸ,ɸ,C2_p, c3_p,ɸ,ɸ, C4, C5, ɸ,ɸ, C6, C7,ɸ, ɸ} 

D={ɸ,D6,ɸ,D7,ɸ,D0,ɸ, D1_p, ɸ, D2, ɸ, D3, ɸ, D4, ɸ, D5} 

 In the folding set, A, B, C and D represent butterfly 

operations at stages 1, 2, 3, 4, respectively. The passing 

operations used for real-imaginary splitting are denoted as 

 
 

Fig. 1. DIF Flow graph 

1067



 
TABLE I.   CONTROL SIGNALS FOR THE SERIAL 

ARCHITECTURES. 

 
Control unit Period Control signal 

D1,M1 2M 
M cycles - 0 

M cycles - 1 

D2,M2 4M 
M cycles - 1 

3M cycles - 0 

Sw_2, M3 4M 

M cycles - 1 

2M cycles - 0 

M cycles - 1 

Sw_3 – C1 4M 
M cycles - 0 
M cycles -1 

2M cycles - 0 

Sw_3 – C2 4M 
M cycles - 1 

3M cycles - 0 

         

 Bi_p, Ci_p and Di_p. The timing diagram for this 16-

point fully-real implementation is shown in Fig. 5.  

To process multiple channels using the same 

hardware, an interleaved FFT architecture is proposed. 

However, to facilitate interleaving, additional delay 

elements are required. This interleaving operation can be 

implemented using a simple multiplexer as shown in Fig. 

6. The control signals are made K-slow for a K-way 

interleaving operation [9]. 

 

3.2. Hybrid Datapath 

 

The proposed hybrid serial architecture is shown in Fig. 7. 

Here only the first two stage butterflies are real, and the 

rest are complex.  At those stages, where complex 

butterflies are used, a single line in the dataflow graph 

corresponds to two physical wires, as shown by bold lines 

in Fig. 7. This also doubles the number of delay elements 

as compared to the real FFT architecture. The 2nd 

butterfly block in the hybrid datapath is shown in Fig. 3. It 

can be seen in the figure that there is a provision for 

combining the two inputs to the butterfly as a single  

complex value. This facility is required as the rest of the 

datapath is complex. The complex butterflies used in this 

hybrid design is a traditional one with provision for 

bypassing the input values. 

  The control signals for both architectures are  periodic 

with period 2M cycles which can be generated using a 

log2N-bit counter. One of the main advantages of the 

hybrid architecture is that the feedback loop does not 

contain the multiplier block. Hence, it enables pipelining 

of the multiplier circuit as demanded by the application. 

Similar to the serial architecture, the hardware in the 

hybrid structure is also underutilized due to the feedback 

structure which requires simple bypassing operation 

across the butterfly block during which the butterfly block 

is not utilized. The following folding set is used for a 16 

point Hybrid FFT implementation with 2-stage pipelining 

between stages.   

 

A={ɸ, ɸ,ɸ, ɸ,ɸ, ɸ, ɸ, ɸ, A0, A1, A2, A3, A4, A5, A6, A7}  

B={B3,ɸ,ɸ,ɸ,ɸ,B4_c,B5_c,B6_c,B7_c,ɸ,ɸ,ɸ,ɸ,B0,B1,B2} 

C={ɸ,C0,C1,ɸ,ɸ,C2_c,c3_c,  ɸ, ɸ, C4, C5, ɸ, ɸ,   ɸ, ɸ, ɸ } 

 
 

Fig. 2.   Fully-real serial RFFT architecture 

 
Fig. 4. Switches 

 
Fig. 5. Flow-graph with scheduling for 16-point fully-real 

implementation  

 
Fig. 6. Control structure for interleaving by 2 

 
 

Fig. 3. Butterfly modules for fully-real and hybrid 

structures. 
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D={ɸ, ɸ, ɸ, ɸ, D0, ɸ, D1_c, ɸ, D2, ɸ, ɸ, ɸ, D4,  ɸ, D5, ɸ}  

 In the folding set, A, B, C and D represent butterfly 

operations at stages 1, 2, 3, 4, respectively. Input 

combining operations are denoted as Bi_c, Ci_c and Di_c. 

The timing diagram for this 16 point hybrid 

implementation is shown in Fig. 8. 

 

4. PERFORMANCE COMPARISON 

 

 In terms of performance, the hybrid architecture is 

superior compared to a fully-real design, as the multiplier 

is not part of the feedback loop. In addition, the latency of 

this architecture is approximately three-fourth compared 

to a fully-real design. 

 
TABLE II.   HARDWARE COST COMPARISON OF SERIAL RFFT 

 

Architecture 
Complex 

Multiplier 
Real adder Delays 

Hybrid Log2N - 3 4log2N – 4 5N/4-2 

Hybrid- 
Interleaved by 

factor K 

Log2N - 3 4log2N - 4 K(5N/4-2) 

Fully-real Log2N - 3 2log2N 3N/2  - 5 

Full- real- 
Interleaved by 

factor K 

Log2N - 3 2log2N K(3N/2- 5) 

 

 Table II compares the hardware cost of the four 

architectures presented in this paper. These include: 

real/hybrid architectures and serial/interleaved. Table II 

shows that the real and hybrid architectures require the 

same number of multipliers; however, the hybrid 

architectures require more adders. Furthermore, the 

additional cost of interleaving is the increase in the 

number of delay elements by 100%. 

 Table III presents the synthesis results obtained for the 

proposed architectures. The four designs were synthesized 

using a clock speed of 100 MHZ in Synopsys Design 

Compiler. It can be seen that the hybrid datapath requires 

about 20% increase in area and about 21% increase in 

power compared to the real datapath. Although the hybrid 

design requires less delays than real design, it has more 

area. This may be attributed to the cost of additional 

adders and interconnections since the inter-stage 

communicating signals are complex. It may also be 

attributed to the sub-optimal optimization by the Design 

Compiler. The area increase due to interleaving is about 

18% for hybrid and 30% for real design. This is 

significantly less than just duplicating the serial datapath 

twice. The hybrid datapath was also optimized for speed. 

The highest speed achieved for the hybrid datapath is with 

no internal pipelining of the multiplier is 437 MHz 

whereas that for the real datapath is 100 MHz. 

 
TABLE III.   SYNTHESIS RESULTS OF 1024-POINT SERIAL RFFT 

USING 45NM NCSU PDK FOR 100 MHZ CLOCK 

FREQUENCY 
 

Architecture Area Power 

Hybrid 0.346152 mm2 17.165 mW 

Hybrid- Interleaved by factor 2 0.410346 mm2 19.153 mW 

Fully-real 0.284327 mm2 14.8012 mW 

Fully-real- 

Interleaved by factor 2 
0.375221 mm2   17.7314 mW 

 

5. CONCLUSION 

 

This paper has presented four different serial architectures 

for radix-2 computation of RFFT; these include 

real/hybrid and serial/interleaved. It can be seen that a 

hybrid version of the serial architecture has the main 

advantage that the multiplier is outside the feedback loop. 

Thus, this architecture can be fine-grain pipelined and can 

be operated with very low supply voltage for low-power 

applications. The interleaved designs are attractive for 

biomedical applications. Interleaving avoids doubling the 

area due to replication of datapath. Power spectral density 

(PSD) is an important feature for classification of 

biomedical signals [10]. Future work will be directed 

towards computing PSD of the real signals using the FFT 

architectures presented in this paper. 
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Fig. 7. Hybrid serial RFFT architecture 

 

 
Fig. 8 Flow-graph with scheduling for 16-point hybrid 

implementation 
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