
SERIAL AND INTERLEAVED ARCHITECTURES FOR COMPUTING REAL FFT

Aravinth Chinnapalanichamy and Keshab K. Parhi, Fellow, IEEE

Department of Electrical and Computer Engineering

University of Minnesota, Twin cities

Minneapolis, MN, USA

{chinn028, parhi}@umn.edu

ABSTRACT

The Fast Fourier transform (FFT) is an important

operation in digital signal processing applications. In

applications such as biomedical signal processing, the

signals are real. The real-valued signals exhibit conjugate

symmetry, giving rise to redundant values in the outputs.

This property can be exploited to reduce arithmetic

computations, area and power consumption. This paper

presents hardware architectures for computing real FFT

that exploits this conjugate symmetry property where the

inputs are processed in a serial manner. This is facilitated

by pushing the twiddle factor values across various

butterfly stages. In this paper, two different serial FFT

architectures are presented: one using real and the other

using hybrid datapaths. These architectures process one

sample per clock cycle and are well suited for low-

sample-rate applications such as biomedical. These

architectures are also modified so that two independent

computations can be interleaved in the same datapath. The

advantage of interleaving is reduction in area, and is

attractive for applications where FFT computation of two

independent real signals is required.

Index Terms – FFT, Real FFT, Serial Processing,

Interleaving, Real Datapath, Hybrid Datapath

1. INTRODUCTION

Fast Fourier transform is used extensively in many signal

processing applications. FFT architectures are based on

the most widely used Cooley-Tukey algorithm [1]; this is

a divide and conquer algorithm that recursively transforms

a DFT of size N = N1.N2 into two smaller DFTs of

sizes N1 and N2, along with O (N) multiplications

referred to as twiddle factors. In general, FFT engines

operate over complex inputs and the butterflies used in

these architectures also process complex samples.

There has been an increasing interest in FFT

computation for real valued signals in recent years. Many

of the biomedical signals such as electrocardiogram

(ECG) and electroencephalogram (EEG) are real. Several

architectures have been recently proposed for computing

real FFT. In these architectures, nearly half the

computations are eliminated. The RFFT architectures [2]-

[7] use either fully-real or hybrid data paths. A real

butterfly accepts only two real inputs as opposed to a

complex butterfly that processes four real values

corresponding to two complex inputs. Although a real

datapath based architecture minimizes the number of

samples that are computed at the end of each FFT stage,

these architectures require more area and power compared

to architectures based on hybrid data paths. Parallel real

FFT architectures using real and hybrid data paths have

been presented in [7] and [2], respectively. These

architectures process multiple consecutive samples every

clock cycle, and achieve full hardware utilization with

respect to the butterflies as well as the delay elements.

The main objective of this paper is design of serial real

FFT architectures where area is a main constraint and

sample rates required are very low. Examples of these

applications include processing of ECG, EEG, or heart

sound. Typically sampling rates in these applications

rarely exceed 1 kHz. Often processing of signals from

multiple channels or electrodes is of interest. Serial

architectures for computing complex FFT have been

presented in [8]; however, no architecture has been

presented for computing real FFT in a serial manner

where one sample is processed every cycle. In these

architectures, the butterflies are half-utilized; however, the

delay elements are fully utilized. Serial architectures for

computing real FFT of two independent channels are also

presented using both real and hybrid datapaths. It is

shown that the area overhead for interleaving two

channels is less than 20% compared to without

interleaving.

The rest of this paper is organized as follows. Section

2 reviews different FFT architectures implemented based

on Cooley-Tukey algorithm. The proposed serial RFFT

implementations are presented in Section 3. Section 4

presents comparisons of hardware area and power

consumption of the proposed serial architectures. The

conclusions are presented in Section 5.

2. REVIEW OF FFT ARCHITECTURES FOR

REAL INPUTS

2.1. L- Parallel FFT

The level of parallelism determines the number of inputs

that a single stage can process in a single cycle. In most

cases, it is a design choice that one makes while

formulating the folding factor for the FFT flow graph.

Sometimes, this leads to underutilization of hardware

1066978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

components which can be seen in [3] where the folding

set used to design the hardware contains null operations.

However, as described in [3], the folding set can be

modified such that the null operations can be replaced

with useful calculations.

2.2. Radix 2,22 & 23 FFT

The radix values used for designing an FFT architecture

can play a significant role in reducing the hardware. The

number of complex multipliers required depends on the

radix chosen. For example, if the number of multipliers

required in a radix-2 implementation is N, then the

number of complex multipliers required for radix-22 and

radix-23 are N/2 and N/4, respectively. The area benefits

for higher radices are significantly higher compared to

lower radices.

2.3. Datapath style – Fully-Real, Fully-Complex and

Hybrid

The datapaths chosen for FFT architectures also have

impact on area and power consumption. For real inputs, a

complex/hybrid datapath leads to a large area penalty;

however, the latency of these architectures is less than that

of a fully-real datapath [7]. In addition, there has to be a

real-imaginary combiner circuit at the output for a fully-

real datapath.

Another major disadvantage with fully-real datapath is

that it requires more complex multipliers whereas in

complex and hybrid datapaths, there is more flexibility in

pushing the twiddle factors across the butterfly stages and

replace complex multipliers with simple multipliers.

3. PROPOSED RADIX-2 SERIAL FFT

ARCHITECTURES

The flow graph, shown in Fig. 1, represents decimation-

in-frequency (DIF) FFT computation for real inputs. The

unnecessary computations for real inputs, as highlighted

in the figure, are avoided by removing their calculations

from the datapath. Each line in the flow graph represents

two physical wires, one for carrying the real part of a

computation value and the other for the imaginary part.

However, when the inputs are real, certain lines in the

flow graph can use a single wire, i.e., either real or

imaginary part of a value. Complex values are generated

only when a real value passes through a complex

multiplier. This can be seen in Fig. 1 where lines between

bold dots represent complex data values and normal lines

represent real values. Thus, when folding, instead of

placing null operations, useful computations can be

carried out by splitting real and imaginary parts of a

complex value and expanding the imaginary part to fill the

removed part. Since real and imaginary parts of a complex

value traveling along different routes have to be scaled by

the same twiddle factor value after each butterfly stage,

additional delay elements as described in [7] are required

as part of the control circuit.

3.1. Fully-Real Serial FFT Datapath

The proposed fully-real RFFT structure is shown in Fig.

2. The feedback in the architecture reduces the number of

delays and improves the hardware utilization efficiency of

the delays to 100%, similar to the serial complex FFT

architectures. For an N point RFFT, the block marked in

Fig. 2 gets repeated. The last stage multiplier requires

only multiplication by W2 which can be computed using

simple addition and scaling operations. A canonical

signed digit multiplier [9] can be used for this purpose. A

butterfly, at any cycle, produces two outputs and one of

them is fed back to the delay elements, so that a serial

data-flow is realized. The data that is sent back to the

delay elements later passes through the butterfly without

any operations. For this purpose, a provision for directly

bypassing the input to the output (bypassing) using a

multiplexer structure is incorporated into the butterfly as

shown in Fig. 3. The same bypassing is also provided for

the multiplier block.

In order to synchronize data in accordance with the

timing, multiplexers, demultiplexers, switches and delay

elements are used. Two types of de-multiplexers (D1 &

D2), multiplexers (M1 & M2) and switches (S1 & S2) are

used as shown in Fig. 4. Control signals for these blocks

are shown in Table I. For an N-point RFFT with n stages,

all the control signals can be generated using a single n-bit

counter with simple combinational logic. For each stage

of the RFFT containing M delay elements, the control

signals follow a period of 2M and 4M.

 The following folding set is used for a 16 point Fully-

Real FFT design with 1 stage pipelining between stages.

A={ ɸ,ɸ, ɸ,ɸ ,ɸ,ɸ, ɸ,ɸ, A0, A1, A2, A3, A4, A5, A6, A7}

B={B3,ɸ,ɸ,ɸ,ɸ,B4_p,B5_p,B6_p,B7_p,ɸ,ɸ,ɸ,ɸ,B0,B1,B2}

C={C0,C1,ɸ,ɸ,C2_p, c3_p,ɸ,ɸ, C4, C5, ɸ,ɸ, C6, C7,ɸ, ɸ}

D={ɸ,D6,ɸ,D7,ɸ,D0,ɸ, D1_p, ɸ, D2, ɸ, D3, ɸ, D4, ɸ, D5}

 In the folding set, A, B, C and D represent butterfly

operations at stages 1, 2, 3, 4, respectively. The passing

operations used for real-imaginary splitting are denoted as

Fig. 1. DIF Flow graph

1067

TABLE I. CONTROL SIGNALS FOR THE SERIAL

ARCHITECTURES.

Control unit Period Control signal

D1,M1 2M
M cycles - 0

M cycles - 1

D2,M2 4M
M cycles - 1

3M cycles - 0

Sw_2, M3 4M

M cycles - 1

2M cycles - 0

M cycles - 1

Sw_3 – C1 4M
M cycles - 0
M cycles -1

2M cycles - 0

Sw_3 – C2 4M
M cycles - 1

3M cycles - 0

 Bi_p, Ci_p and Di_p. The timing diagram for this 16-

point fully-real implementation is shown in Fig. 5.

To process multiple channels using the same

hardware, an interleaved FFT architecture is proposed.

However, to facilitate interleaving, additional delay

elements are required. This interleaving operation can be

implemented using a simple multiplexer as shown in Fig.

6. The control signals are made K-slow for a K-way

interleaving operation [9].

3.2. Hybrid Datapath

The proposed hybrid serial architecture is shown in Fig. 7.

Here only the first two stage butterflies are real, and the

rest are complex. At those stages, where complex

butterflies are used, a single line in the dataflow graph

corresponds to two physical wires, as shown by bold lines

in Fig. 7. This also doubles the number of delay elements

as compared to the real FFT architecture. The 2nd

butterfly block in the hybrid datapath is shown in Fig. 3. It

can be seen in the figure that there is a provision for

combining the two inputs to the butterfly as a single

complex value. This facility is required as the rest of the

datapath is complex. The complex butterflies used in this

hybrid design is a traditional one with provision for

bypassing the input values.

 The control signals for both architectures are periodic

with period 2M cycles which can be generated using a

log2N-bit counter. One of the main advantages of the

hybrid architecture is that the feedback loop does not

contain the multiplier block. Hence, it enables pipelining

of the multiplier circuit as demanded by the application.

Similar to the serial architecture, the hardware in the

hybrid structure is also underutilized due to the feedback

structure which requires simple bypassing operation

across the butterfly block during which the butterfly block

is not utilized. The following folding set is used for a 16

point Hybrid FFT implementation with 2-stage pipelining

between stages.

A={ɸ, ɸ,ɸ, ɸ,ɸ, ɸ, ɸ, ɸ, A0, A1, A2, A3, A4, A5, A6, A7}

B={B3,ɸ,ɸ,ɸ,ɸ,B4_c,B5_c,B6_c,B7_c,ɸ,ɸ,ɸ,ɸ,B0,B1,B2}

C={ɸ,C0,C1,ɸ,ɸ,C2_c,c3_c, ɸ, ɸ, C4, C5, ɸ, ɸ, ɸ, ɸ, ɸ }

Fig. 2. Fully-real serial RFFT architecture

Fig. 4. Switches

Fig. 5. Flow-graph with scheduling for 16-point fully-real

implementation

Fig. 6. Control structure for interleaving by 2

Fig. 3. Butterfly modules for fully-real and hybrid

structures.

1068

D={ɸ, ɸ, ɸ, ɸ, D0, ɸ, D1_c, ɸ, D2, ɸ, ɸ, ɸ, D4, ɸ, D5, ɸ}

 In the folding set, A, B, C and D represent butterfly

operations at stages 1, 2, 3, 4, respectively. Input

combining operations are denoted as Bi_c, Ci_c and Di_c.

The timing diagram for this 16 point hybrid

implementation is shown in Fig. 8.

4. PERFORMANCE COMPARISON

 In terms of performance, the hybrid architecture is

superior compared to a fully-real design, as the multiplier

is not part of the feedback loop. In addition, the latency of

this architecture is approximately three-fourth compared

to a fully-real design.

TABLE II. HARDWARE COST COMPARISON OF SERIAL RFFT

Architecture
Complex

Multiplier
Real adder Delays

Hybrid Log2N - 3 4log2N – 4 5N/4-2

Hybrid-
Interleaved by

factor K

Log2N - 3 4log2N - 4 K(5N/4-2)

Fully-real Log2N - 3 2log2N 3N/2 - 5

Full- real-
Interleaved by

factor K

Log2N - 3 2log2N K(3N/2- 5)

 Table II compares the hardware cost of the four

architectures presented in this paper. These include:

real/hybrid architectures and serial/interleaved. Table II

shows that the real and hybrid architectures require the

same number of multipliers; however, the hybrid

architectures require more adders. Furthermore, the

additional cost of interleaving is the increase in the

number of delay elements by 100%.

 Table III presents the synthesis results obtained for the

proposed architectures. The four designs were synthesized

using a clock speed of 100 MHZ in Synopsys Design

Compiler. It can be seen that the hybrid datapath requires

about 20% increase in area and about 21% increase in

power compared to the real datapath. Although the hybrid

design requires less delays than real design, it has more

area. This may be attributed to the cost of additional

adders and interconnections since the inter-stage

communicating signals are complex. It may also be

attributed to the sub-optimal optimization by the Design

Compiler. The area increase due to interleaving is about

18% for hybrid and 30% for real design. This is

significantly less than just duplicating the serial datapath

twice. The hybrid datapath was also optimized for speed.

The highest speed achieved for the hybrid datapath is with

no internal pipelining of the multiplier is 437 MHz

whereas that for the real datapath is 100 MHz.

TABLE III. SYNTHESIS RESULTS OF 1024-POINT SERIAL RFFT

USING 45NM NCSU PDK FOR 100 MHZ CLOCK

FREQUENCY

Architecture Area Power

Hybrid 0.346152 mm2 17.165 mW

Hybrid- Interleaved by factor 2 0.410346 mm2 19.153 mW

Fully-real 0.284327 mm2 14.8012 mW

Fully-real-

Interleaved by factor 2
0.375221 mm2 17.7314 mW

5. CONCLUSION

This paper has presented four different serial architectures

for radix-2 computation of RFFT; these include

real/hybrid and serial/interleaved. It can be seen that a

hybrid version of the serial architecture has the main

advantage that the multiplier is outside the feedback loop.

Thus, this architecture can be fine-grain pipelined and can

be operated with very low supply voltage for low-power

applications. The interleaved designs are attractive for

biomedical applications. Interleaving avoids doubling the

area due to replication of datapath. Power spectral density

(PSD) is an important feature for classification of

biomedical signals [10]. Future work will be directed

towards computing PSD of the real signals using the FFT

architectures presented in this paper.

6. ACKNOWLEDGMENT

The authors thank Mr. Vishal Vijayakumar and Mr. Amey

Naik for numerous discussions on the control circuit for

interleaved FFTs.

Fig. 7. Hybrid serial RFFT architecture

Fig. 8 Flow-graph with scheduling for 16-point hybrid

implementation

1069

7. REFERENCES

[1] A. V. Oppenheim, R. W. Schafer, Discrete-Time

Signal Processing, (3rd Edition), Prentice Hall Signal

Processing, 2009

[2] M. Ayinala and K.K. Parhi, "FFT Architectures for

Real-valued Signals based on Radix-2^3 and Radix-

2^4 algorithms," IEEE Trans. Circuits and Systems-I:

Regular Papers, 60(9), pp. 2422-2430, Sept. 2013

[3] M. Ayinala, M.J. Brown and K.K. Parhi, "Pipelined

Parallel FFT Architectures via Folding

Transformation", IEEE Trans. VLSI Systems, pp.

1068-1081, 20(6), June 2012

[4] H. Sorensen, D. Jones, M. Heideman, and C.

Burrus, “Real-valued fast Fourier transform

algorithms,” IEEE Trans. Acoust., Speech Signal

Process., vol. 35, no. 6, pp. 849–863, Jun 1987.

[5] M. Garrido, K. K. Parhi, and J. Grajal, “A pipelined

FFT architecture for real-valued signals,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 12,

pp. 2634–2643, Dec. 2009.

[6] Y. Voronenko and M. Püschel, “Algebraic signal

processing theory: Cooley-Tukey type algorithms

for real DFTs,” IEEE Trans. Signal Process., vol.

57, no. 1, pp. 205–222, Jan. 2009.

[7] S.A. Salehi, R.Amirfattahi, and K.K.

Parhi, "Pipelined Architectures for Real-Valued FFT

and Hermitian-Symmetric IFFT with Real

Datapaths," IEEE Trans. Circuits and Systems-II:

Transactions Briefs, 60(8), pp. 507-511, Aug. 2013

[8] S. He and M. Torkelson, “Design and implementation

of a 1024-point pipeline FFT processor,” in Proc.

IEEE Custom Integr. Circuits Conf., Santa Clara, CA,

USA, May 1998, pp. 131–134.

[9] K. K. Parhi, VLSI Digital Signal Processing Systems:

Design and Implementation. Hoboken, NJ, USA:

Wiley, 1999.

[10] K.K. Parhi and M. Ayinala, "Low-Complexity Welch

Power Spectral Density Computation," IEEE Trans.

Circuits and Systems-I: Regular Papers, 61(1), pp.

172-182, Jan. 2014

1070

