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ABSTRACT

We present matrix factorization as an enabling technique for
analog-to-digital matrix multiplication (AD-MM). We show
that factorization in the analog domain increases the total pre-
cision of AD-MM in precision-limited analog multiplication,
reduces the number of analog-to-digital (A/D) conversions
needed for overcomplete matrices, and avoids unneeded com-
putations in the digital domain. Finally, we present a factor-
ization algorithm using alternating convex relaxation.

Index Terms— Analog-to-digital conversion, matrix fac-
torization, compressed sensing, analog-to-information.

1. INTRODUCTION

Analog-to-digital matrix multiplication (AD-MM) is a com-
mon task in modern sensing and communication systems.
AD-MM digitizes an analog signal and multiplies the re-
sulting data by a matrix. For example, AD-MM is used
in cameras to compress digital data using transform coding
and quantization [1]. Furthermore, many analog signals are
known to have a sparse representation in some basis, which
presents an opportunity to reduce the number of A/D conver-
sions and the output (digital) data rate of AD-MM.

Many recent papers [2–10] have explored using analog
matrix multiplication to alleviate A/D requirements for AD-
MM. For example, hardware implementations of compressed
sensing (CS) known as Analog-to-Information Converters
(AIC) multiply in the analog domain a signal x, which is
low-dimensional in some basis Ψ ∈ Rn×n, by a matrix
A ∈ Rm×n that is incoherent with Ψ [11, 12]. The inco-
herence requirement places restrictions on allowable matri-
ces A. In practice, only Bernoulli and Hadamard matrices
(A ∈ {0, 1}m×n) are used; other allowable matrices with
real-valued entries (e.g., random Gaussian and partial Fourier
matrices [3,13]) are usually not used due to the high precision
requirements of analog hardware.

The practical limitations on the precision and size of the
matrix operation not only affect AICs, but also affect other
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forms of analog matrix multiplication. For example, many
recent papers [5–10] propose applying the discrete Fourier
transform (DFT) in the analog domain for use in software de-
fined radios. The analog DFT enables RF channelization [7]
in order to relax the high RF sampling requirements from the
signal-to-noise ratio (SNR) requirements, reducing the over-
all A/D power [14]. However, in practice, analog DFT imple-
mentations are restricted to small (e.g., n = 16) matrices due
to the large precision required.

1.1. Contributions.

In this paper, we offer factorization as a technique to increase
the total precision of AD-MM while tolerating lower analog
multiplication precision. We also show that analog AD-MM
reduces the number of A/D conversions and can lower overall
energy compared to digital (conventional) AD-MM for over-
complete matrices.

This paper is structured as follows. In §2, we present the
motivations for matrix factorization. In §3, we discuss four
applications of analog AD-MM using factorization. In §4, we
present an algorithm to factor large matrices and show that
it can efficiently compute a good factorization requiring only
modest analog precision.

Fig. 1. Digital AD-MM (left) and analog AD-MM (right).

1.2. Definitions and notation.

Formally, digital (conventional) AD-MM as shown in Fig. 1
applies a matrix A to a digitized representation of the analog
signal x. The digitization process is described by the quanti-
zation function Q. Analog AD-MM, proposed in this paper,
instead relies on a factorization BC ≈ A with B ∈ Rm×m

and C ∈ Rm×n. Analog AD-MM applies C in the analog
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domain to the analog data x ∈ Rn, quantizes the result, and
finally appliesB in the digital domain to produce the output z.
Our goal is to design B and C such that BQ(Cx) ≈ AQ(x).
Throughout this paper, we restrict our attention to square ma-
trices B, although extensions to rectangular B are possible,
and usually consider the overcomplete case m < n.

2. MATRIX FACTORIZATION: MOTIVATIONS

In digital matrix multiplication, an increase in precision (or
resolution) necessitates an increase in the number of digital
control gates, size of memory, and interconnects, all of which
increase the energy of a multiply-and-accumulate (MAC) op-
eration [15]. Energy also increases with precision in analog
matrix multiplication. A prototype analog multiplier (Fig. 2)
illustrates how each voltage xj is sampled on the capacitor
array connected to the signal path at time j to form a charge
proportional to the total capacitance of the array. We let cij
be the constant of proportionality. This sampling operation is
performed for each j = 1 : n and accumulated together in
the analog charge domain to form yi = Σn

j=1cijxj . Analog
charge domain multiplication is a practical approach for ana-
log MAC, although many other approaches and variants are
possible [10, 16]. Nonetheless, with any of these approaches,
an increase in precision of the analog matrix C requires an in-
crease in the number of different analog multiplier elements
(e.g., capacitors in Fig. 2), for the roughly the same reasons
as in the digital case. Therefore, energy grows with precision
just as it does in digital domain matrix multiplication.

Fig. 2. Example of an analog charge-domain multiplier with
binary-weighted encoding (cij = 12

1024 shown) with precision
NC = 10 bits (210 different multiplier values).

Factorization can relax the hardware requirements im-
posed by a need for high precision. Formally, to find a good
factorization, we solve for B and C in

minimize ||A−BC||F
subject to C ∈ ΩC

B ∈ ΩB ,
(1)

where C (B) is constrained to take on values in an integer
set ΩC (ΩB). For example, Fig. 2 gives an example using
binary-weighted encoding, i.e.,

cij = cmax

2NC
yij , −2NC ≤ yij ≤ 2NC , yij ∈ Z,

for i = 1, ..., n and j = 1, ...,m, where NC is the multi-
plier precision. The constraint sets (ΩB , ΩC) can also enforce
non-negativity and other constraints to capture the hardware
limitations of analog multiplication.

How much precision do we require in C? The answer
depends on the application — for example, a coarse multi-
plication where C = Q(A) at the 2 bit level is good enough
for detection (see §3) while 10 bits may be required to meet
stringent SNR requirements.

Recall that the dimensionality of the digital output space
is size m, while the dimensionality of the analog input space
is size n, where m < n. Thus analog AD-MM requires only
m A/D conversions, a significant savings over the n A/D con-
versions required by a digital AD-MM system. Analog AD-
MM also requires a digital computation (i.e., multiplication
by B) of size m2, instead of nm for digital AD-MM, but has
the added overhead of the analog multiplication by C of size
nm.

Furthermore, pruning (eliminating outputs (Cx)j ≈ 0)
also reduces the number of digital MACs required. If we can
detect (Cx)j ≈ 0, then we need not multiply it by the j-th
row of B. For example, if |(Cx)j | ≤ δ for all j = 1, . . . ,m
and δ is an application-specific pruning threshold, then multi-
plication by B need not be performed (see §3).

Thus, compared to digital AD-MM, analog AD-MM re-
quires fewer A/D conversions and fewer digital MACs, but
incurs the extra overhead of the analog multiplication Cx. To
first order, the circuit-independent energy estimates for digital
(Ed) and analog (Ea) AD-MM are

Ed ' mnEd-op + nEA/D

Ea ' mnEa-op +mEA/D + (γm)2Ed-op,

where Ed-op is the energy cost per digital MAC operation
(Joule/op), EA/D is the cost per A/D conversion, Ea-op is the
cost per analog MAC operation, and γ ∈ [0, 1] is the prun-
ing factor. We assume here that the A/D quantizes the analog
signal to the same precision for both architectures. (All three
energy costs depend strongly on the precision.)

The first-order estimates show that increasing n increases
both the digital MAC and the A/D costs in digital AD-MM
but increases only the analog MAC cost in analog AD-MM.
Furthermore, [7, 8] report that Ea-op < Ed-op, which makes
analog AD-MM attractive from an energy perspective as well.
For example, the charge-domain FFT proposed in [7] achieves
an energy per analog FFT operation that is 130 times lower
than its digital equivalent, at similar SNR levels.

3. EXAMPLES

Using four examples, we show that lowering the precision in
B and C need not decrease the fidelity of the output z.
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3.1. Factorization for precision-limited C

As a first example (Fig. 3), we factor a truncated discrete co-
sine transform (DCT) matrix A ∈ R50×120, keeping the 50
basis vectors (rows) of lowest frequency, and constrain the
factor C to have binary-weighted elements with precisions
NC = 10, NC = 6, and NC = 4 bits. The factorizations
decrease in quality at lower precision, achieving MSEs of
4.8 × 10−5, 6.6 × 10−4, and 1.3 × 10−3 for NC = 10, 6,
and 4 respectively.

Fig. 3. Factorization results on the truncated DCT matrix.

3.2. Image Reconstruction

As a second example (Fig. 4), we factor a truncated DCT ma-
trix A ∈ R16×64 with NC = 10 bit for an application in
image reconstruction. The resulting matrix BC is used to
reconstruct the image for each color channel (RGB) indepen-
dently. The reconstruction shows little loss in fidelity, despite
a 4:1 compression ratio. The peak SNR decreases from 28.3
dB (original) to 26.7 dB (reconstruction).

Fig. 4. Reconstruction of an image on 8 × 8 patches.

3.3. Factorization for precision-limited B and C

As our third example, we show that factorization allows us
to use lower precision in our intermediate MAC operations
while maintaining approximately the same output error in z.
In Fig. 5, we examine the effect of bounded precision in A,
B and C on fidelity of the output, using fixed-point (FP)

arithmetic. The data A ∈ R20×200 is generated by select-
ing entries uniformly from [−1, 1]. The desired output is
ztrue = Ax where x is a 10-bit FP i.i.d. Gaussian random
vector. To factor A into B and C, we solve Prob. 1 with
the constraint that ||B||∞ ≤ 1. Define zA = QNA

(A)x and
zBC = QNB

(B)QNC
(C)x, where QN denotes quantization

to N bits in FP, and all MAC operations are performed in FP
arithmetic. We measure output error on output z as the aver-
age of the loss L(z) = ||z − ztrue||2 over 1000 realizations of
the input x.

Fig. 5 shows E[L(zA)] and E[L(zBC)] as we vary the
precision NB of B while fixing the precision of A, C, and
Cx. We achieve similar expected loss using factored AD-MM
with NB = 5 and NC = 4 or using digital AD-MM with
NA = 5. For higher NB , FP factored AD-MM approaches
the performance of infinite precision factored AD-MM. We
can further decrease the expected loss by finding a better fac-
torization of A into low precision factors; we return to this
question in §4.
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Fig. 5. Expected output error for FP factored AD-MM and FP
digital AD-MM. Here, A[NA] denotes A quantized to preci-
sion NA in FP.

3.4. Detection and estimation

Many sensing applications (e.g., radar) require the ability
to actively detect a signal’s presence and the ability to esti-
mate signal features. If the detection accuracy is robust to
decreased precision, low precision sensing can save energy
while reliably detecting the signal. However, high precision
may be necessary to estimate signal features once the signal
is detected.

As an example of a detection-estimation problem, con-
sider a generalized likelihood ratio test (GLRT) [17]. The task
is to classify whether the signal is present or not, and to esti-
mate the (unknown) time of arrival (s∆t). Let the observation
vector be x ∈ Rn, the signal be s ∈ Rn, and the noise bew ∼
N (0, σ2I) (Fig. 6 (b)). The GLRT (with threshold η) rejects
the null hypothesis H0 (no signal) in favor of H1 (signal) if
p(x;∆t̂,H1)
p(x;H0) > η for all ∆t̂. The maximum likelihood estimate

of the time of arrival (ToA) is ∆t̂ = arg maxj a
T
j x, where aTj

is a row vector containing a time-shifted version of s. These
row vectors are collected in the matrix A (see Fig. 6 (a)). For
detection, we let C be the positive part of QNC

(A), i.e., the
matrixA quantized toNC bits. We forceC to be nonnegative,
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since an analog multiplier in practice generally requires addi-
tional control logic to encode negative values. Then, for ToA
estimation, we set B = argminB∈ΩB

||A − BC||F , where
ΩB = Rm×m.

We show in Fig. 6(c) only a modest decrease in detection
accuracy for a 1-bit, nonnegative C at a given SNR compared
to using full precision A. Furthermore, using the backend
matrix B significantly increases the time of arrival (ToA) es-
timation accuracy, conditioned on detection of the signal (see
Fig. 6(d)). For example, with an SNR = −7.8 dB, we see an
increase from 74% to 91% ToA estimation. Thus, for this par-
ticular application of AD-MM, reducing precision is practical
since it lowers the analog AD-MM complexity while preserv-
ing detection performance.
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Fig. 6. (a) Factorization for A where C is constrained to be
nonnegative, with 2 bit precision. (b) The input waveform. (c)
Area Under the Curve (AUC) found from Receiver Operating
Characteristic curves. (d) ToA accuracy.

4. COMPUTING THE FACTORIZATION

For most applications with stationary signal statistics, fac-
torization need only be performed once, but must be done
well. Unfortunately, the factorization problem in Eq. 1 is not
convex, due to 1) the non-convex constraints C ∈ ΩC and
B ∈ ΩB , and 2) the product of variables BC. To find an
approximate solution for one variable holding the other fixed,
we use a relax-and-round heuristic: minimize over the con-
vex hull of the feasible set (i.e., conv(Ω)), and quantize the

resulting matrix with N bit precision. We then use alternat-
ing minimization to find an approximate solution for the full
problem:

1: repeat
2: B(k) ← QNB

(
argminB∈conv(ΩB) ||A−BC||F

)
3: C(k) ← QNC

(
argminC∈conv(ΩC) ||A−BC||F

)
4: εk+1 ← ||A−B(k)C(k)||F
5: until converged

We compute the approximation error ε = ||A−BC||F for
factorizations of 50 randomly initialized (RI) matrices, where
C is constrained to lie in a nonnegative, FP set. The final
distribution of ε for different precisions shown in Fig. 7(a),
and indicates that ε converges to a compact minimum at 10
bit precision after just a few iterations. However, for smaller
precisions, the average ε is significantly worse (see Fig. 7(b)).

Greedy initialization (GI) overcomes this problem. GI
uses the locally optimal matrices C(k−1) found at higher pre-
cisions NC + 1 and NB + 1 to initialize C in the alternating
minimization to initialize the search for a new factorization
with precisions NC and NB . Fig. 7(b) shows that the GI per-
forms substantially better than RI at low precision.
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Fig. 7. (a) Histogram using the RI factorization procedure.
(b) ε for different precisions NC using RI and GI.

5. CONCLUSION

Factorization is an enabling technique for analog AD-MM
that increases its advantages over (conventional) digital AD-
MM. Factorization can increase the total precision of ana-
log AD-MM even with lower analog multiplication precision.
Examples show that analog AD-MM performs well and that a
good factorization requiring only modest analog precision can
be efficiently computed. The authors are currently working to
implement analog AD-MM in hardware.
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