
LOW-LATENCY LIST DECODING OF POLAR CODES WITH DOUBLE THRESHOLDING

YouZhe Fan?, Ji Chen?, ChenYang Xia?, Chi-ying Tsui?, Jie Jin†, Hui Shen†, and Bin Li†

? Department of Electronic and Computer Engineering, the HKUST, Hong Kong
†Communications Technology Research Lab., Huawei Technologies, P. R. China

ABSTRACT

For polar codes with short-to-medium code length, list successive
cancellation decoding is used to achieve a good error-correcting per-
formance. However, list pruning in the current list decoding is based
on the sorting strategy and its timing complexity is high. This results
in a long decoding latency for large list size. In this work, aiming
at a low-latency list decoding implementation, a double threshold-
ing algorithm is proposed for a fast list pruning. As a result, with a
negligible performance degradation, the list pruning delay is greatly
reduced. Based on the double thresholding, a low-latency list decod-
ing architecture is proposed and implemented using a UMC 90nm
CMOS technology. Synthesis results show that, even for a large list
size of 16, the proposed low-latency architecture achieves a decod-
ing throughput of 220 Mbps at a frequency of 641 MHz.

Index Terms— Polar codes, list decoding, successive cancella-
tion decoding, low latency, VLSI implementation

1. INTRODUCTION

Successive cancellation decoding (SCD) is proposed in [1] for de-
coding polar codes, and its hardware implementation is extensively
studied in [2]-[12]. However, for polar codes with short-to-medium
code length, the error-correcting performance of the SCD is unsatis-
factory. To improve the performance, SCDs with multiple codeword
candidates are proposed. They are the list decoding [13], [14] and
its variants [15]-[17]. For a better performance, cyclic redundancy
check (CRC) code is serially concatenated with polar codes and the
CRC bits are used to choose the valid codeword from the list candi-
dates [13], [18], [19]. As a result, the list decoding of polar codes
achieves or even exceeds the performance of Turbo codes [20] and
LDPC codes [13]. However, this performance improvement is at the
cost of a larger list size (e.g., 16 or 32) and the increased complexity
highly desires an efficient list decoding architecture. In this work,
the efficient and low-latency implementation of the list decoding is
explored, aiming at promoting polar codes as a competitive coding
candidate in both error-correcting and implementation aspects.

The first list decoding architecture for polar codes is proposed
in [21]. In [22], the pre-computation look-ahead technique [6] is
used in the list decoding for a lower latency, while its memory size
is tripled. In [21] and [22], a small list size of 4 and 2 are used,
respectively. When the list decoding decodes an information bit,
the number of the codeword candidates are doubled. To maintain
a reasonable decoding complexity, once the candidate size exceeds
the specific list size L, some of the codeword candidates have to be
pruned. The common pruning strategy is to sort the codeword candi-
dates based on their metrics and keep the L best of them. However,
the sorting operation incurs a large hardware and timing complexity,
especially when L is large. In [23], a list decoding architecture with
list size of 8 is proposed, and a Bitonic sorting network is customized

for efficient sorting. Nevertheless, up to three pipeline stages are
used by the sorting architecture. As a result, to implement the list
decoding with large list size in hardware, list pruning architecture is
critical, especially to achieve a low decoding latency.

In this work, the list pruning architecture is optimized in both
algorithmic and architectural levels. Recently, instead using log-
likelihood (LL) to capture the metric of the list candidates, the LL
ratio (LLR) representation is used for the list decoding [24]-[25].
Benefiting from the numerical accuracy and stability of the LLR, a
small and regular architecture of the memory and processing element
(PE) can be used for the list decoding [24]. Therefore, in this work,
LLR is used in the design of the low-latency pruning architecture
of the list decoder. Very recently in [26]-[28], borrowing some ad-
vanced techniques used in the SCD implementation [2], the special
constituent codes of polar codes are utilized to reduce the latency of
the list decoding. However, conventional sorting strategies are still
used for their list pruning and this limits the latency reduction.

2. RELATION TO PRIOR WORK

The main contributions of this work are outlined as follows:

1. Different from the previous works on list decoding [13]-[28], a
double thresholding strategy (DTS) is proposed to replace the
sorting strategy for list pruning.

2. In the architectural level, the architectures for DTS and threshold
value update are proposed. As a result, even for a large list size,
the logic delay of list pruning is very small.

3. A low-latency list decoding architecture for a large list size, i.e.
16, is implemented in the UMC 90nm CMOS technology. Its
decoding latency is even smaller than that of list size of 8 [23].

3. LIST DECODING OF POLAR CODES

A length N = 2n polar code with rate R = K/N is specified by the
generator matrix GN and a frozen set Ac ⊂ {0, 1, . . . , N − 1} of
cardinality |Ac| = N −K. A source word of polar codes is denoted
as uN , and uN ∈ {0, 1}N . It consists of K information bits ui

(i /∈ Ac) and N − K frozen bits ui (i ∈ Ac). The information
bit is used to deliver the data, while the frozen bit is set to a value,
e.g., 0, pre-known by the decoder. If the r-bit CRC is used, the last
r information bits take the CRC of the previous K − r bits. In the
encoder, the codeword xN ∈ {0, 1}N is generated as xT

N = uT
NGN

and sent over the physical channels.
Let y be the noise corrupted signal of xN at the receiver. The

LLRs input to the decoder are given as

L0
i = log [Pr (y|xi = 0)]− log [Pr (y|xi = 1)] (1)

for i = 0, 1, . . . , N − 1. The decoding process of polar codes can
be illustrated by two trees: the decoding tree and the scheduling

1042978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

0 1

0 10 1

0 1

0 10 1

0 1

0 10 1

0 1

0 10 1

0 1 0 1

0 1
null

u0

u1

u2

u3

(a) Decoding tree and decoding path

Ln depthL0

f 2

1

2

0

g2

f 1

f 2 g2

g1

Ln L1 LnL2 LnL3

(b) Scheduling tree for SCD

Fig. 1: List decoding example of polar codes with N = 4 andL = 2

tree. Fig. 1 shows an example of the trees for N = 4. The decod-
ing tree of a length-N polar code is a depth-N binary tree, with ui

mapped to the nodes at depth i + 1. Its root node represents a null
state. A path from the root node to a depth-i node represents a sub-
vector [u0, u1, . . . , ui−1] of the source word uN , and is named as
the decoding path pi. Specifically, a path from the root node to the
leaf node of the decoding tree represents a source word uN of polar
codes, and the value of each bit of uN is shown in the corresponding
node lying at this decoding path. Notice that, if ui is a frozen bit, it
only assumes 0. Hence, the right sub-tree rooted at the depth-(i + 1)
node can be pruned, as the source words included in it are not valid.
For example, if Ac = {0}, the gray sub-tree in Fig. 1(a) is pruned.

Decoding the polar codes can be treated as a search problem in
the pruned decoding tree. The conventional SCD performs a depth-
first search. Given a partial decoding path [u0, u1, . . . , ui−1], the
SCD generates the LLR of bit ui, denoted as Ln

i . If i ∈ Ac, ui is
decoded as ûi = 0 irrespective of Ln

i . Otherwise, a ML decision is
made for the information bit ui (i /∈ Ac), and is given by

ûi = Θ (Ln
i) =

{
0

1

Ln
i ≥ 0

Ln
i < 0

(2)

Based on the decision rule in (2), single decoding path from the root
to the leaf is obtained in the decoding tree, e.g., the red path in Fig.
1(a), and it is the source word ûN decoded by the SCD.

For a better error-correcting performance, a breadth-first search
is performed by the list decoding. To constrain the searching
complexity, a list size L is set. Let L decoding paths at depth
i of the decoding tree be denoted as pil =

[
ul
0, u

l
1, . . . , u

l
i−1

]
,

l = 0, 1, . . . ,L − 1. For each path candidate pil , a path metric is
associated with it and denoted as pmi

l . When decoding the informa-
tion bit ui, L decoding paths are extended to 2L paths. From [24],
the path metrics of the two extensions of the path pil are given by

pmi+1
l (ui) = pmi

l + log
[
1 + e(2ui−1)Ln

i

]
(3)

where ui assumes 0 and 1, corresponding to the left and right exten-
sions of pil . In the hardware [24], (3) is approximated by

pmi+1
l (ui) =

{
pmi

l

pmi
l + |Ln

i |
if ui = Θ (Ln

i)

if ui 6= Θ (Ln
i)

(4)

The operation in (4) is denoted as path metric update (PMU). Based
on the 2L pms from PMU, L extended paths with the smallest pms
are chosen and they are the paths at depth i+1, i.e., pi+1

l , 0 ≤ l < L.
This operation is named as the list pruning operation (LPO).

From (3) or (4), it can be seen that the PMU needs the knowl-
edge of Ln

i and it is generated by the SCD. The SCD operation can
be described by the scheduling tree shown in Fig. 1(b). The schedul-
ing tree of a length-N polar code is a depth-n balanced binary tree.
It consists of two kinds of nodes: f node and g node. The functions
included in one node can be evaluated in one clock cycle. Generally,

L

DTS.1

AT

DTS.3

RT

DTS.2

(a) RT = pmi
L−1

L AT

RT

(b) A tighter RT

L AT

RT

(c) Too tight RT

Fig. 2: Double thresholding strategy

the depth-first traversal of the scheduling tree completes decoding
one codeword, and the ith leaf node outputs the LLR Ln

i . In the list
decoding, L SCDs are deployed and executed in parallel. When they
reach the leaf node, the SCDs are stalled and the PMU calculates 2L
path metrics from L Ln

i s with (4). After that, the LPO chooses the
best L decoding paths. The SCD cannot be restarted until the LPO
finishes, because the subsequent SCD operations need the knowl-
edge of the updated decoding paths pi+1

l . Therefore, the delay of the
PMU and the LPO result in an increased latency of the list decoding.

From (4), the PMU is implemented with an adder array and its
logic delay is small. However, a sorting strategy is used for the LPO
in the conventional list decoding architecture [21]-[24]. For a shorter
delay, a parallel sorting architecture [29] is used in [21] and [24].
However, its hardware complexity is O

(
L2
)
, and hence it becomes

inefficient for large L. On the other hand, a Bitonic sorting network
is used in [23], and its delay also scales with L. Next, to achieve a
short-delay LPO and hence a low-latency decoder, a double thresh-
olding algorithm and its corresponding architecture are proposed.

4. LOW-LATENCY LIST DECODING IMPLEMENTATION

4.1. Double Thresholding Strategy

In this sub-section, a list pruning strategy with small logic delay is
introduced. Based on the 2L path metrics from PMU, it approxi-
mately finds the L smallest pms and their corresponding path exten-
sions. To achieve it, the properties of the 2L path metrics in (4) are
firstly studied and presented in the following proposition.

Proposition 1. Assume L path metrics at depth i of the decoding
tree are sorted and

pmi
0 < pmi

1 < · · · < pmi
l < pmi

l+1 < · · · < pmi
L−1, (5)

and they are extended to 2L path metrics with (4). If the subset of
pmi+1

l (ui)s smaller than T is defined as

Ω (T) =
{
pmi+1

l (ui) |pmi+1
l (ui) < T

}
, (6)

then, the cardinality of Ω (T) for T = pmi
l satisfies

l ≤
∣∣∣Ω(pmi

l

)∣∣∣ ≤ 2l. (7)

Due to the space limitation, the proof of Proposition 1 is not
shown. Based on Proposition 1, the Double Thresholding Strategy
(DTS) for list pruning is given as follows.

Double Thresholding Strategy. Assume L path metrics at depth
i of the decoding tree follow (5). To prune the 2L path extensions

1043

pm0

pm1

pm2

pm3

pm4

pm5

pm6

pm7

R
a
d

ix
-4

S
o
r
ter

AT

1
0

w3w1

w3w0

w3w2

w3w3

w3w4

w3w5

w3w6

w3w7

R
a
d

ix
-4

S
o
r
ter

a

b
a>b

0
1

0
1

0
1

w3w2

w
3
w6

w2w0

w2w1

w2w2

w
2
w3

0
1

0
1

a

b
a>b

w2w1

w2w3

w1w0

w
1
w1

0
1

a

b
a>b

w1w0

w1w1

stage 2 stage 1 stage 0

(a) Architecture for AT

w3w2

w3w3

w3w6

w3w7

a

b
a>b

1
0

1
0

a

b
a>b

1
0
RT

(b) Architecture for RT

Fig. 3: Threshold tracking architecture

at depth i + 1, two thresholds, i.e. Acceptance Threshold (AT) and
Rejection Threshold (RT), are defined and set as

[AT,RT] =
[
pmi
L/2, pm

i
L−1

]
. (8)

The path extensions at depth i + 1 obey the following pruning rule:

1. if pmi+1
l (ui) < AT , the path extension is kept;

2. if pmi+1
l (ui) > RT , the path extension is pruned;

3. for path extensions with AT ≤ pmi+1
l (ui) ≤ RT , they are

randomly chosen such that the list size remains to be L.

Fig. 2(a) illustrates the DTS for LPO. Assume the 2L extended
pms are sorted and the top path extension has the smallest path met-
ric. If the list is exactly pruned, the top L path extensions will be the
decoding paths at depth i + 1. However, when the DTS is used, the
shaded paths are reserved for depth i + 1. As shown in Fig. 2(a),
from Proposition 1, DTS.1 ensures that at least L/2 best decoding
paths are kept. Moreover, the number of the reserved paths does not
exceed L. On the other hand, since

∣∣Ω (pmi
L−1

)∣∣ ≥ L − 1, DTS.2
efficiently excludes the path extensions that are definitely not in the
set of theL best paths. Finally, when the number of the paths kept by
DTS.1 is smaller than L, DTS.3 will fill up the L path candidates.
Notice that the number of the pruned paths in DTS.2 is no greater
than L. Therefore, DTS.3 is always used to fill up the decoding list.

From Fig. 2(a), the performance degradation of the DTS is due
to DTS.3. If RT is loose, some decoding path belongs to the L
best paths may not be chosen by DTS.3. To alleviate this, a tighter
(smaller) RT can be assumed. For example, the value of RT in (8) can
be replaced by pmi

k (k < L − 1). As shown in Fig. 2(b), by doing
so, the number of the candidates that DTS.3 can choose decreases,
and hence the probability that the chosen decoding path belongs to
the L best paths increases. However, from (7), when RT = pmi

k

(k < L − 1), it is possible that more than L decoding paths will be
pruned by DTS.2. As a result, DTS.3 is not always able to fill up the
L path candidates, as depicted in Fig. 2(c). Hence, if RT value is
too small, the performance will become poor, as the decoding paths
are aggressively pruned. Therefore, an optimal value of RT exits.

Finally, from the hardware implementation perspective, the
complexity of the DTS is much smaller than that of the conventional
sorting strategy. To implement DTS.1 and DTS.2, 4L comparators
are sufficient and all the comparison operations can be executed
in parallel as the pms are compared with the same fixed threshold
values. To implement DTS.3, the circuits based on the priority en-
coder are used. Most importantly, due to the parallel nature of the
DTS, the logic delay of the DTS is much shorter than that of the full
sorting strategy. As a result, the PMU together with the DTS can be
finished in one clock cycle.

LLR

memory
cross bar L SCDs

pointer

memory

partial-sum

memory

lazy copypath memory
CRC

check

PMU

DTS

TTA

L
0
LN

ûN

Fig. 4: Block diagram of the low-latency list decoding architecture

4.2. Threshold Tracking Architecture

To support the DTS block, the values of AT and RT are needed.
These values are calculated by the Threshold Tracking Architecture
(TTA) shown in Fig. 3. From Section 4.1, AT and RT used at depth
i + 1 of the decoding tree depend on the path metric at depth i.
Therefore, the TTA can be executed in parallel with the list decoding
in extending the path from depth i to i + 1. This leads to a relaxed
timing budget for TTA, and it can be executed in multiple cycles.

From (8), the TTA finds the median and the maximum values of
theL input numbers. Finding the median is more complicated and its
implementation is based on the following property of the medians.

Proposition 2. Assume W numbers {w0, w1, . . . , wW−1} satisfy
the following properties:{

w0 ≤ w1 ≤ · · · ≤ wm0 ≤ · · · ≤ wW/2−1

wW/2 ≤ wW/2+1 ≤ · · · ≤ wm1 ≤ · · · ≤ wW−1

(9)

where wm0 and wm1 are the medians of
{
w0, . . . , wW/2−1

}
and{

wW/2, . . . , wW−1

}
, respectively. If the median of {w0, w1, . . . ,

wW−1} is denoted as wm, then,
wm ∈

{
wm0 , . . . , wW/2−1, wW/2, . . . , wm1

}
wm ∈ {wm1 , . . . , wW−1, w0, . . . , wm0}
wm = wm0 = wm1

wm0 < wm1

wm0 > wm1

wm0 = wm1

(10)

Proposition 2 can be recursively used to find the value of AT. Fig.
3(a) shows the corresponding architecture for L = 8. It consists of
two radix-L/2 sorters [29], L− 1 MUXes, and log2 L comparators.
As shown in Fig. 3(a), the L path metrics are evenly divided into
two groups and passed through the radix-L/2 sorter. As a result, the
metrics in each group are sorted, i.e., w3

0 ≤ w3
1 ≤ w3

2 ≤ w3
3 and

w3
4 ≤ w3

5 ≤ w3
6 ≤ w3

7 . From Proposition 2, by comparing w3
2 and

w3
6 , the size of the median candidate set is halved. In Fig. 3(a), the

comparison result of w3
2 and w3

6 controls the 4 MUXes at stage 2 and
they choose

{
w2

0, w
2
1, w

2
2, w

2
3

}
based on (10). Moreover, w2

0 ≤ w2
1

and w2
2 ≤ w2

3 . Hence, similar comparison and MUX architectures
can be used for the following stages. As a result, after log2 L stages,
the median of the inputs, i.e., AT for the next depth, is obtained.

To find the value of RT, the architecture is simpler. If the max-
imum path metric is adopted as RT as (8), the maximum of w3

3 and
w3

7 in Fig. 3(a) is RT. If the second maximum path metric is taken
for a tighter RT, it can be found by the architecture in Fig. 3(b).

4.3. List Decoding Architecture

The top-level architecture of the proposed low-latency list decoding
is shown in Fig. 4. It containsL SCDs and each SCD is implemented
with a semi-parallel architecture of M < N/2 processing elements
(PEs) [10]. Based on Ln

i s output from the SCD, the PMU generates
2L pms from L stored pms with (4). Out of these 2L pms, L pms
are chosen by the DTS and they are stored in the register of the PMU.

1044

CC 0 1 2 3 4 5 6 7 8 9 10 11
f1 f2 DTS LCP g2 DTS LCP g1 f2 DTS LCP g2

TTA TTA TTA TTA TTA TTA

Fig. 5: Timing diagram of the low-latency list decoding architecture

CC 0 1 2 3 4 5 6
f1 PMU g1 f2 DTS LCP g2

TTA TTA TTA TTA

Fig. 6: List decoding timing diagram with frozen sibling

Based on registered pms, the TTA computes AT and RT used in
decoding ui+1. After DTS, the memory contents related to the SCD
need to be copied as [21]. As shown in Fig. 4, the lazy copy (LCP)
block generates the control logic for them. Finally, when the list
decoding reaches the leaf node of the decoding tree, the contents of
the path memory are passed to the CRC check block. The source
word that satisfy the CRC check is the decoding result ûN .

Fig. 5 shows the timing diagram of the proposed low-latency list
decoding architecture, using the example in Fig. 1 for illustration.
For simplicity, assume there are already L decoding paths in the list
in the beginning. From Fig. 5, different from the conventional SCD,
two additional clock cycles are inserted after each leaf node SCD
operation of the scheduling tree. As depicted in Fig. 5, they are used
for the list pruning by DTS and the memory manipulation by LCP,
respectively. As a result, the latency of decoding one codeword in
terms of clock cycle number is given by

T̃d = 4N + (n− 2− log2 M)N/M. (11)

Finally, Fig. 5 also shows that the TTA is not on the critical path of
the list decoding. At least 2 clock cycles are available for the TTA.

4.4. Further Latency Reduction

In this sub-section, frozen siblings are used to reduce the decoding
latency. They are defined as [u2j , u2j+1] with {2j, 2j + 1} ⊂ Ac.
With 0 ≤ j < N/2, a frozen sibling corresponds to a leaf sibling in
the scheduling tree. For a general sibling, as shown in Fig. 5, fn and
gn are sequentially evaluated based on the LLR

[
Ln−1

2j , Ln−1
2j+1

]
of

their parent in the scheduling tree. However, for a frozen sibling, its
path extension is fixed and given by [û2j , û2j+1] = [0, 0]. Moreover,
the PMU from pm2j

l to pm2j+2
l can be simplified as

pm2j+2
l = pm2j

l +Θ
(
Ln−1

2j

) ∣∣Ln−1
2j

∣∣+Θ
(
Ln−1

2j+1

) ∣∣Ln−1
2j+1

∣∣ . (12)

It can be proven that (12) is equivalent to (4) for the frozen sibling,
and 5 clock cycles can be saved by (12). For example, if [u0, u1] in
Fig.1 is a frozen sibling, the timing diagram of the list decoding is
shown in Fig. 6. All the decoding operations related to the frozen
sibling shrinks to a PMU operation (12) in one clock cycle. There-
fore, the latency of the proposed list decoding is reduced to

Td = 4N + (n− 2− log2 M)N/M − 5FS, (13)

where FS is the number of frozen siblings in the given polar codes.

5. EXPERIMENTAL RESULTS

An (N,R, r) = (2048, 1/2, 16) polar code is sent over the BAWGN
channel and decoded with different decoders. Their frame error rate
(FER) curves are shown in Fig. 7. All the list decodings use (4)
for PMU as in the hardware implementation. L = 2, 4, 8, and 16

1 1.5 2 2.5 3 3.5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SCD

List = 2

List = 4

List = 8

E
b
/N

0

F
E

R

RT=PM
15

RT=PM
13

RT=PM
14

LDPC

Sorting Strategy

1.5 1.6 1.7 1.8 1.9 2
10

-5

10
-4

10
-3

10
-2

RT=PM
15

RT=PM
13

RT=PM
14

Sorting Strategy

List = 16

Fig. 7: Performance comparison of different decoders

Table 1: SYNTHESIS RESULTS AND COMPARISON

This Work [21] [23] [24]
Technology 90 nm CMOS

LL/ LLR LLR-based LL-based LL-based LLR-based
N 1024
L 16 4 8 4
M 64

Area (mm2) 7.46 3.53 8.64 1.743
Clock Freq. (MHz) 641 314 625 412
Throughput (Mbps) 220 124 177 162

are simulated for conventional list decoding with sorting strategy
[24]. As a reference, the performances of the SCD and (N,R) =
(2304, 1/2) WiMAX LDPC code [30] are also presented. Here, 25
iterations are used for LDPC decoding. It can be seen that the per-
formance of polar codes is better than that of the LDPC code, when
L = 16 list decoding is used. Finally, three DTSs are used for
L = 16. Their RT s assume pmi

13, pmi
14, and pmi

15, respectively,
and AT is fixed to pmi

8. Fig. 7 indicates that pmi
14 is the opti-

mal value of RT and the performance degradation of the resulting
low-latency list decoding is smaller than 0.02 dB.

The architecture shown in Fig. 4 is implemented for L = 16
to decode (N,R) = (1024, 1/2) polar codes. The quantization
scheme of [24] is used, i.e., 6 bits for channel LLR L0

i and 8 bits for
path metric. The design is synthesized using a UMC 90 nm CMOS
technology, and Table I summarizes the synthesis results. Due to a
large list size, the area of the LLR memory in our implementation is
large and equals to 4.5 mm2. For the target polar codes, FS = 231
and decoding throughput can be obtained from (13). From the ta-
ble, the proposed architecture achieves a decoding throughput of 220
Mbps, and it is even greater than that of list size of 8 in [23]. The
results in Table I demonstrate the effectiveness of the proposed low-
latency list decoding architecture with double thresholding.

6. CONCLUSION

For a low-latency list decoding, a double thresholding strategy
(DTS) is proposed for fast list pruning. With a negligible per-
formance degradation, the DTS greatly reduces the pruning logic
delay. Based on the DTS, the low-latency list decoding architec-
ture is proposed. Comparison results demonstrate that the proposed
architecture achieves a much lower latency for a large list size.

1045

7. REFERENCES

[1] E. Arıkan, “Channel polarization: a method for constructing
capacity-achieving codes for symmetric binary-input memory-
less channels,” IEEE Trans. Inform. Theory, vol. 55, no. 7, pp.
3051-3073, July 2009.

[2] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified
successive-cancellation decoder for polar codes,” IEEE Com-
mun. Lett., vol. 15, no. 12, pp. 1378-1380, Dec. 2011.

[3] G. Sarkis and W. J. Gross, “Increasing the throughput of polar
decoders,” IEEE Commun. Lett., vol. 17, no. 4, pp. 725-728,
Apr. 2013.

[4] Z. Huang, C. Diao, J. Dai, C. Duanmu, X. Wu, and M. Chen,
“An improvement of modified successive-cancellation decoder
for polar codes,” IEEE Commun. Lett., vol. 17, no. 12, pp.
2360-2363, Dec. 2013.

[5] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-
parallel successive-cancellation decoder for polar codes,” IEEE
Trans. Signal. Process., vol. 61, no. 2, pp. 289-299, Jan. 2013.

[6] C. Zhang and K. K. Parhi, “Low-Latency sequential and over-
lapped architectures for successive cancellation polar decoder,”
IEEE Trans. Signal. Process., vol. 61, no. 10, pp. 2429-2441,
May 2013.

[7] B. Yuan and K. K. Parhi, “Low-Latency successive-
cancellation polar decoder architectures using 2-bit decoding,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 4, pp.
1241-1254, Apr. 2014.

[8] C. Zhang and K. K. Parhi, “Latency analysis and architecture
design of simplified SC polar decoders,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 61, no. 2, pp. 115-119, Feb. 2014.

[9] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross,
“Fast polar decoders: algorithm and implementation,” IEEE J.
Select. Areas Commun., vol. 32, no. 5, pp. 946-957, May 2014.

[10] Y.-Z. Fan and C.-Y. Tsui, “An efficient partial-sum network ar-
chitecture for semi-parallel polar codes decoder implementa-
tion,” IEEE Trans. Signal. Process., vol. 62, no. 12, pp. 3165-
3179, Jun. 2014.

[11] A. J. Raymond and W. J. Gross, “A scalable successive-
cancellation decoder for polar codes,” IEEE Trans. Signal. Pro-
cess., vol. 62, no. 20, pp. 5339-5347, Oct. 2014.

[12] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Ler-
oux, P. Meinerzhagen, A. Burg, and W. J. Gross, “A successive
cancellation decoder ASIC for a 1024-bit polar code in 180
nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf.
(A-SSCC), Nov. 2012, pp. 205-208.

[13] I. Tal and A. Vardy, “List decoding of polar
codes,” 2012, arXiv:1206.0050v1 [Online]. Available:
http://arxiv.org/abs/1206.0050v1

[14] K. Chen, K. Niu, and J. R. Lin, “List successive cancellation
decoding of polar codes,” Electron. Lett., vol. 48, no. 9, pp.
500-501, Apr. 2012.

[15] K. Niu and K. Chen, “Stack decoding of polar codes,” Electron.
Lett., vol. 48, no. 12, pp. 695-697, Jun. 2012.

[16] K. Chen, K. Niu, and J. R. Lin, “Improved successive cancella-
tion decoding of polar codes,” IEEE Trans. Commun., vol. 61,
no. 8, pp. 3100-3107, Aug. 2013.

[17] K. Niu, K. Chen, and J. R. Lin, “Low-Complexity sphere de-
coding of polar codes based on optimum path metric,” IEEE
Commun. Lett., vol. 18, no. 2, pp. 332-335, Feb. 2014.

[18] K. Niu and K. Chen, “CRC-Aided decoding of polar codes,”
IEEE Commun. Lett., vol. 16, no. 10, pp. 1668-1671, Oct.
2012.

[19] B. Li, H. Shen, and D. Tse, “An adaptive successive cancella-
tion list decoder for polar codes with cyclic redundancy check,”
IEEE Commun. Lett., vol. 16, no. 12, pp. 2044-2047, Dec.
2012.

[20] K. Niu, K. Chen, and J. R. Lin, “Beyond Turbo codes: rate-
compatible punctured polar codes,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2013, pp. 3423-3427.

[21] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and
A. Burg, “Hardware architecture for list successive cancella-
tion decoding of polar codes,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 61, no. 8, pp. 609-613, Aug. 2014.

[22] C. Zhang, X. You, and J. Sha, “Hardware architecture for
list successive cancellation polar decoder,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Jun. 2014, pp. 209-212.

[23] J. Lin and Z. Yan, “Efficient list decoder architecture for polar
codes,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Jun.
2014, pp. 1022-1025.

[24] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-
Based successive cancellation list decoding of polar codes,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), May 2014, pp. 3903-3907.

[25] B. Yuan and K. K. Parhi, "Successive cancellation list
polar decoder using log-likelihood ratios," presented in
Asilomar Conf., 2014, arXiv:1411.7282 [Online]. Available:
http://arxiv.org/abs/1411.7282

[26] J. Lin, C. Xiong, and Z. Yan, “A reduced latency list decoding
algorithm for polar codes,” 2014, arXiv:1405.4819v1 [Online].
Available: http://arxiv.org/abs/1405.4819v1

[27] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and
W. J. Gross, “Increasing the speed of polar list de-
coders,” 2014, arXiv:1407.2921v1 [Online]. Available:
http://arxiv.org/abs/1407.2921v1

[28] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation
list decoders for polar codes with multibit decision,” IEEE
Trans. Very Large Scale Integr. Syst., to appear.

[29] L. Amaru, M. Martina, and G. Masera, “High speed archi-
tectures for finding the first two maximum/minimum values”
IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 12, pp.
2342-2346, Dec. 2012.

[30] Air Interface for Fixed and Mobile Broadband Wireless Ac-
cess Systems, IEEE 802.16e, Oct. 2005 [Online]. Available:
http://www.ieee802.org/16/tge

1046

