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ABSTRACT
Computational energy versus computational precision represents a
critical implementation-level tradeoff facing embedded DSP sys-
tems. Focusing on multiply-accumulate (MAC) hardware, which is
used extensively in DSP implementations (e.g., FIR filtering), this
paper proposes an approach that exploits floating-point representa-
tion of multipliers to enable optimization of their quantization error.
The approach introduces a parameter α for coefficient scaling, and
optimizes α to minimize the output error. Applied to FIR filters
with coefficient representation of 6 bits, the approach reduces the
quantization error by 37×, compared to traditional, linear-quantized
fixed-point coefficient representation and by 28×, compared to
unoptimized floating-point coefficient representation. Further, the
energy and hardware gate-count of a MAC unit is reduced by 1.4×
and 1.2×, respectively, compared to an implementation based on
fixed-point representation.

Index Terms— embedded systems, digital filter, floating point,
quantization error, low energy

1. INTRODUCTION
The emergence of advanced sensing technologies has enabled ac-
quisition of a wide range of physical signals. Combining embed-
ded sensing with local signal analysis capabilities is leading to high-
value systems in a range of application domains, including medical,
environmental, industrial, etc. [1, 2, 3, 4]. However, energy con-
straints play a critical role in embedded sensing systems. This leads
to tradeoffs, whereby the functions and/or computational precision
through which local analysis can be performed is limited. Such lim-
itations are of particular concern with advanced algorithms, which
typically require specific operations performed with specific level of
precision [2].

This paper focuses on enabling a high-level of precision for FIR
filtering, which is among the most widely performed operations in
embedded sensing systems. Given its prominence, FIR filter accel-
erators are often employed [5, 6]. Their design is driven by energy-
precision tradeoffs, in the context of the entire system. Namely,
for ultra-low-energy sensors, fixed-point representation (and corre-
sponding computation) is typically used, to avoid energy overheads
at the low dynamic range usually required. This paper proposes the
use of mixed fixed-point and floating-point representation for an FIR
accelerator at the low-dynamic range levels (∼6 bits). A common
approach explored for achieving low-energy digital filters is through
circuit-level knobs, such as reducing supply voltage [7, 8], which
can lead to low throughput and reliability issues. Here we show how
energy-versus-precision trade-offs in digital filters can be substan-
tially improved by judicious digital representation and correspond-
ing optimization of the coefficients. The proposed implementation
leads to increased precision through two mechanisms: (1) non-linear
quantization, favoring low-valued multipliers; and (2) explicit opti-
mization of the filter co-efficients to minimize the quantization error.
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Future Architectures Research (C-FAR) and Systems on Nanoscale Informa-
tion fabriCs (SONIC), two of the six SRC STARnet Centers, sponsored by
MARCO and DARPA.

Together these enable precision at the level of >10-b computation,
using 6-b hardware, having complexity simpler than a typical fixed-
point multiplier.

2. APPROACH
To present the proposed approach, we consider, as a representative
application, EEG-based seizure detection. Feature extraction corre-
sponds to spectral energy computation from each EEG channel over
a one-second epoch, with three epochs then combined for classifica-
tion [9]. The corresponding system is shown in Fig. 1, consisting of
front-end decimation filtering, followed by band-pass filtering (via a
bank of FIR filters) and output-sample accumulation. We note that
the input data stream, provided by an ADC, has fixed-point repre-
sentation, as is typical. In the following subsections, we first analyze
the quantization error of the filter coefficients, and then describe the
benefits of mixed fixed-/floating-point multiplication, proposing a
corresponding implementation. Then, we describe how the imple-
mentation enables an optimization that substantially reduces the ef-
fects of quantization error.
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Fig. 1. Example system, corresponding to an EEG-based seizure
detector, employing FIR filtering for a decimation filter and eight
band-pass filters (BPF1-8).

2.1. Filter Coefficient Quantization Error

The familiar FIR filtering computation can be represented as in Eq.
1 (where y represents an output sample, hi represents ith filter coef-
ficient, xi represents samples of the input signal, and N represents
the filter order):

y =

N−1∑
i=0

hi · xi. (1)

Typically computed via multiply-accumulate (MAC) hardware, Fig.
2 shows the effect of linear coefficient quantization at the 6-b level:
(a) and (d) show the coefficients for the decimation filter and the
last band-pass filter, respectively; (b) and (e) show histograms of the
coefficients with bins corresponding to the quantization levels; and,
(c) and (f) show histograms of the corresponding quantization error,
normalized to the least-significant bit. As seen, the coefficients fall
in a small number of bins, implying inefficient quantization, and ex-
hibit substantial quantization error. Further, the dominant bins corre-
spond to small-valued coefficients, implying large percentage error.
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We point out that the characteristics observed for the last band-pass
filter are typical across the filter bank, since all filters have coeffi-
cients determined by the same envelop but modulated by a sinusoid
at the corresponding center frequency.
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Fig. 2. Traditional fixed-point linear quantization of filter coeffi-
cients to the 6-b level for (a)-(c) decimation filter and (d)-(f) last
band-pass filter used for feature extraction in the seizure detector.

2.2. Mixed Fixed-point/Floating-point Multiplication

The issue above occurs for two reasons: (1) large-valued multipliers,
which tend to occur infrequently, raise the need for a large linear dy-
namic range; (2) linear quantization has particularly severe impact
on the percentage error of small-valued multipliers, which tend to
occur with high frequency in many applications of interest (e.g., that
considered). To address this we leverage a floating-point representa-
tion for the multiplier hi, while retaining fixed-point representation
for the multiplicand:

hi = li × (1 +mi)× 2si ; (2)

li = sign(hi); (3)

si = blog2|hi|c ; (4)

mi =
|hi|

2blog2|hi|c
− 1. (5)

As defined in Eq. 3-5: li represents the sign of the multiplier hi; si
represents the number of bits that |hi| must be shifted by to give a
number in the range [1, 2); and 1+mi represents the resulting num-
ber within that range. Among the parameters li, mi, and si, onlymi

can take on continuous values. Thus, values ofmi in the range [0, 1)
are quantized. Once again limiting ourselves to a 6-b representation,
Fig. 3 shows the effect of coefficient quantization for the decima-
tion filter (with li, mi, and si allocated 1, 1, 4 bits, respectively) and
the last band-pass filter (with li, mi, and si allocated 1, 2, 3 bits,
respectively). The bit allocation is chosen to ensure the dynamic
range max|hi|

min|hi|
can be represented (i.e., dynamic range of ∼215 for

the decimation filter necessitates 4 bits for si and 1 bit for mi, while
dynamic range of∼28 for the band-pass filters necessitates 3 bits for
si and 2 bits for mi). Fig. 3 (a) and (c) show histograms of the co-
efficients with bins corresponding to the quantization levels, and (b)
and (d) show histograms of the quantization error. Comparing with
Fig. 1, we see that the quantization levels are used more uniformly,
implying more efficient quantization. However, the quantization er-
ror, while small in most cases, can now be larger than 1 (which is

the maximum with linear quantization) and is so for a few cases. In
fact, with floating-point representation, the maximum value of the
error is proportionate with the multiplier value. This somewhat miti-
gates the negative effect because it implies reduced percentage error.
Nonetheless, with larger errors now possible, we propose the op-
timization presented in the next section to substantially reduce the
quantization error of the output samples.
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Fig. 3. Floating-point quantization of filter coefficients to the 6 bit
level for (a)-(b) decimation filter and (c)-(d) last band-pass filter for
feature extraction in the seizure detector.

Beyond optimizing quantization, a key benefit enabled by
floating-point multiplier representation is that it can lead to very
low complexity implementation of multiplication hardware. In par-
ticular, multiplication hardware at only the level of precision of mi

and a sign bit (to account for li) is required, along with multiplicand
addition to implement the offset (mi + 1). In a traditional floating
point multiplier, hardware for addition of the exponents (si) and
rescaling of the mantissa product is also required. However, with
fixed-point multiplicands, only a barrel shifter is necessary to apply
the exponent si. Thus, very simple implementation is possible (with
energy and area implications considered in Section 3.2).

2.3. Coefficient Quantization Error Optimization

To address the large quantization errors possible, we now propose
an approach by which floating-point representation for the filter co-
efficients can be exploited to reduce the quantization error of output
samples. The approach is based on introducing a scaling parameter
α, which can be applied to all filter coefficients. This has the ef-
fect of simply scaling the output samples, but, as shown in Fig. 4,
it gives us a knob whereby the coefficients can be mapped to values
that yield lower quantization error. With α corresponding to a single
scaling parameter, this requires quantization levels whose separa-
tion is appropriately scaled, as in the case of the exponential spacing
achieved with floating-point representation. Below, we present the
optimization framework by which a suitable α can be chosen.

coefficient 

value

exponentially increasing spacing of 

quantization levels

×α ×α ×α

original coefficient values
α-optimized coefficient values

ɛ ɛ

Fig. 4. Illustration considering three coefficients, showing how the
values after α optimization (blue squares) can lead to lower quanti-
zation error compared to the original values (red dots).
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First, consider Xi to be a random variable corresponding to the
ith input sample from Eq. 1. We assume that all Xi’s in Eq. 1 are
identically and independently distributed (IID). Note that identical-
ness should hold given that all Xi’s are drawn from the same signal.
However, independence may not hold in some cases. Nonetheless,
the assumption is made here for the convenience of the derivation,
and results from a practical application are presented, validating the
approach.
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Fig. 5. (a) A 42-second segment of EEG from one channel, sampled
at 256 Hz, and (b) a histogram of the sample values, fit to a normal
distribution.

Next, to derive the output quantization error εY , we must first
model the distribution of Xi. Generally, this distribution depends on
the application signal. We proceed with EEG data from the appli-
cation case study. Fig. 5(a) shows a 42-second segment of an EEG
channel sampled at 256Hz. A histogram of the samples is shown in
Fig. 5(b), suggesting the distribution can be modeled as a normal
Xi ∼ N(0, σ2). Following from Eq. 1 and the IID assumption, we
have Y ∼ N(0,

∑
i h

2
i · σ2), showing that the output of filter is also

normally distributed. The variable of interest is the output sample
error due to quantization of the filter coefficients. This error is de-
fined as εY = Y − Ŷ , where Ŷ is the output obtained with quantized
coefficients ĥ (note, this corresponds to the negative of error as typ-
ically defined, and is adopted here for convenience to yield positive
values for quantization error). This gives us:

εY = Y − Ŷ =
∑
i

hi ·Xi −
∑
i

ĥi ·Xi =
∑
i

εhi ·Xi, (6)

from which we can conclude that εY ∼ N(0,
∑
i ε

2
hi
· σ2). Thus, to

minimize the output quantization error, we must minimize the cost
function C~h=(h0,h1,··· ,hn−1)

=
∑
i ε

2
hi

. Notice, this cost function
essentially states that the quantization error of the filter coefficients
must be minimized. To facilitate this minimization, we introduce the
scaling parameter α ∈ R+, which merely has the effect of scaling
the filter output samples by a constant factor (this is acceptable in
most systems). Applying this scaling factor to the coefficients, rep-
resented by the vector ~h, we now have a cost function that can be
optimized over the parameter α:

minαC~h(α) (7)

To solve this, we derive εh. Supposing we quantize m to the k-bit
level. Thus, the quantized m̂ can be expressed as in Eq. 8, εh can
be expressed as in Eq. 9, and, with scaling by α applied, εh(α) can
then be expressed as in Eq. 10:

m̂i =
⌊
mi × 2k

⌋
/2k; (8)

εhi = hi − ĥi = li(1 +mi)2
si − li(1 + m̂i)2

si ; (9)

εhi(α) =
αhi − ˆ(αhi)

α
= li

2si(α)

α
(mi(α)− m̂i(α)). (10)

We note that, α only appears in Eq. 10 via a function having the fol-
lowing form: f(α) = 2blog2(α|hi|)c/α. For this function, f(α) =
f(2α). We thus have εh(α) = εh(2α) and C~h(α) = C~h(2α),
implying that there exists a global minimum for the cost function
C~h(α) in the range α ∈ [1, 2). Consequently, the optimization can
be easily solved by searching for the optimal α in this range. Do-
ing this, Fig. 6(a) and (b) show the coefficient quantization error
distributions that result for the decimation and last band-pass filters,
respectively. Comparing with Fig. 3, we see that the coefficient error
is substantially reduced.
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Fig. 6. Floating-point quantization of filter coefficients after α-
optimization to a 6 bit level for (a) decimation filter and (b) last
band-pass filter used for feature extraction in the seizure detector.

3. DEMONSTRATION AND ANALYSIS

In this section, we analyze the impact on quantization error, energy,
and area of a filter using the proposed approach to multiplication
within an accelerator. For quantitative analysis, we consider the
seizure-detection application described in Section 2, composed of
FIR filters. Results are presented using >210 sec. of EEG data sam-
pled at 256Hz [9, 10]. Three filter implementations are considered,
and each implementation is analyzed with coefficient representation
from 6-10 bits. The implementations are as follows:

1. Traditional fixed-point multiplication.

2. Mixed fixed-/floating-point multiplication, with direct quan-
tization of filter coefficients based on floating-point represen-
tation (with li allocated 1 bit, si allocated 4 bits, andmi allo-
cated the remaining bits).

3. Mixed fixed-/floating-point multiplication, with α-optimized
quantization of filter coefficients based on floating-point rep-
resentation.

All implementations are developed in both MATLAB and RTL Ver-
ilog. For analysis of quantization error, the MATLAB implementa-
tions are employed. For energy and area analysis, the Verilog im-
plementations are synthesized to standard cells in a 32nm CMOS
technology, and simulations are performed at the gate level using a
high-capacity simulator (NanoSim).

3.1. α-Optimization of Filter Coefficients

Before showing results for the various filter implementations, we
provide details pertaining to α-optimization of the filter coefficients,
by using the decimation filter with 6-b coefficient representation as
an example (the approach is similar for other cases). Fig. 7(a) shows
the cost function (Eq. 7) for α ∈ [1, 1024]. In particular, we see
that the function is indeed periodic on a log scale, thus enabling us
to restrict our focus to a range α ∈ [1, 2) for finding the global
minimum. Fig. 7(b) shows the cost function in this range and iden-
tifies the minimum point at α=1.023 (blue point). Compared to the
cost-function value obtained without explicit optimization, i.e., α=1
(green point), we see a 10× reduction in the cost-function value,
which corresponds to the variance of quantization error for the filter
coefficients.
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Fig. 7. Cost function for 6-b quantized decimation filter coefficients
with (a) α ∈ [1, 1024], and (b) α ∈ [1, 2], showing value at global
minimum (blue dot) and value without optimization (green dot).

Next, having found the optimal α, we examine the impact on
the quantization error of the filter output samples. Fig. 8 shows
the quantization error εY of the three implementations (for 6-b co-
efficient representation). Here, the outputs Y have explicitly been
sorted in order of increasing value to aid visualization, and, for ref-
erence, the output sample values have also been plotted, derived us-
ing double-precision computation. As seen, fixed-point coefficient
representation results in substantial error. While floating-point coef-
ficient representation reduces this, the error is substantially reduced
further with the optimization.
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fixed-/floating-point implementation without α optimization; (blue)
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3.2. Performance of Implementations

Having demonstrated the α-optimization approach in one example,
here we compare the three implementations in terms of three metrics:
(1) computational error, quantified by the root-mean-square error of
the filter output samples, normalized to the ideal values; (2) energy
consumption, quantified by the average filter energy consumed per
clock cycle (i.e., per output sample), as derived from NanoSim sim-
ulation; and (3) hardware complexity, quantified by the number of
equivalent NAND gates required in the implementation, as derived
from RTL synthesis. We point out that although the reduced com-
plexity of the floating-point implementations can enable faster clock
speeds, all implementations run at 100MHz.

Fig. 9a shows the computational error for the three implemen-
tations for the decimation filter. We see that the proposed imple-

mentation with α optimization leads to substantially lower quanti-
zation error; in particular, at the 6-b level, the error is 37× lower
than an implementation based on fixed-point coefficient representa-
tion and 28× lower than an implementation without α optimization.
As shown in Section 2.3, with normally distributed input samples,
the filter output samples also follow a normal distribution. Thus,
the same optimization approach can be applied to the band-pass fil-
ters, which are fed by the decimation filter. The computational error
thus achieved at the output of the band-pass filters is shown in Fig.
9b. We see that, at 6 bit level, with floating-point coefficient repre-
sentation and α optimization, the output error is 9× lower than an
implementation based on fixed-point coefficient representation and
7× lower than an implementation without α optimization.

Fig. 9 (c) and (d) show the energy consumption and hardware
complexity, respectively, for the fixed-point and floating-point based
implementations (the energy and hardware complexity are roughly
equivalent with and without α optimization in the floating-point
based implementations). Since floating-point coefficient representa-
tion requires multiplication involving fewer bits (only those used for
m̂i) lower energy and area are observed compared to the case with
fixed-point coefficient representation. The remaining operations
required with floating-point coefficient representation (barrel shift-
ing and sign application) consume much less energy and hardware
compared to multiplication. In particular, at the 6-b level, the pro-
posed implementation leads to 1.4× lower energy and 1.2× lower
hardware complexity.
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Fig. 9. Comparison of (a)-(b) computational error, (c) energy con-
sumption, and (d) hardware complexity of the various filter imple-
mentations within the seizure-detection system.

4. CONCLUSION

This work proposes an optimization for FIR filter coefficients, made
possible when floating-point representation is used, whereby the
quantization error of filter output samples is substantially reduced.
The optimization approach is presented, and its application in FIR
filters within an EEG-based seizure detector is demonstrated and
evaluated. Further, with fixed-point coefficient representation, the
multiplication hardware required is reduced (to just the bits desig-
nated for the mantissa mi). Thus, both the energy and hardware
complexity, evaluated via gate-level synthesis and simulation, are
also reduced.
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