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Abstract—This paper presents novel architectures for linear-
phase FIR digital filters using stochastic computing. Stochastic
computing systems require fewer logic gates and are inherently
fault-tolerant. Thus, these structures are well suited for nanoscale
CMOS technologies. Compared to direct-form linear-phase FIR
filters, linear-phase lattice filters require twice the number of
multipliers but the same number of adders. The hardware
complexities of stochastic implementations of linear-phase FIR
filters for direct-form and lattice structures are comparable. Using
speech signals from ICA ’99 Synthetic Benchmarks, it is shown
that, for linear-phase FIR filters, the error-to-signal power ratios
of stochastic direct-form and stochastic lattice filters are about
the same. However, the error-to-signal power of stochastic direct-
form or lattice filter is an order of magnitude higher at very low
fault rates but is more than two orders of magnitude less when
the fault rate is about one percent than the direct-form, where
the faults represent random bit-flips at outputs of all logic gates.

Keywords—Stochastic computing, stochastic logic, FIR digital
filter, lattice structure, linear-phase FIR filters, fault-tolerance,
hardware complexity.

I. INTRODUCTION

Stochastic computing (SC), first proposed in 1960s [1],
has recently regained significant attention due to its fault-
tolerance and extremely low-cost of arithmetic units [2] [3].
Despite these advantages, stochastic circuits suffer from long
processing latency and degradation of accuracy. Therefore, in
the past, SC applications were limited to the fields of neural
networks [4] and control [5].

Stochastic numbers are based on unary representation
where each bit in the number has the same weight. For
example, in a number with 256 bits, if 35 bits are 1, then
the value of the number is 35/256. If any bit is flipped, the
error introduced due to flipping is 1/256, independent of the
location of the flipped bit. In a two’s complement number,
the error introduced due to flipping of one bit can vary from
1/2 to 1/256, depending on the position of the bit. Thus, the
stochastic implementations are inherently fault-tolerant and are
less affected by errors due to bit flippings. However, note
that an 8-bit binary number requires 256 bits in a stochastic
implementation for same resolution.

Recently, we have demonstrated that stochastic computing
can be used to design digital filters. We have introduced a
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new scaling method to implement inner products and direct-
form FIR digital filters with significantly less output error-to-
signal ratio (see [6]). We have also shown that stochastic IIR
digital filters could be implemented in lattice structure where
the states in filters are orthogonal [7].

It is well known that FIR digital filters can be implemented
using lattice structures. FIR lattice [8] structures play a central
role in the theory of autoregressive signal modeling [9] and are
well suited for implementation of adaptive filters. Although, in
general, 2N multipliers and adders are required for implemen-
tation of N -tap FIR lattice filter, linear-phase FIR lattice filters
require about N multipliers and N adders. Therefore, linear-
phase lattice filters can be implemented using approximately
the same computation complexity as direct-form linear-phase
structures using stochastic computing [10].

The main contributions of this paper are as follows.

• We propose stochastic lattice implementation for
linear-phase FIR filters. It is shown that it can achieve
almost equivalent performance as stochastic imple-
mentation of direct-form structures.

• Fault tolerance properties of stochastic lattice FIR
digital filters due to random bit-flips at all internal
nodes are demonstrated for both direct-form and lat-
tice implementations using speech signals from ICA
’99 Synthetic Benchmarks as input [11].

This paper is organized as follows. Section II addresses
implementation of stochastic inner-products with input vector
size greater than 2. The stochastic lattice implementation of
linear-phase FIR filters is proposed in Section III. Section IV
presents simulation results, comparison of hardware resource
and fault-tolerance analysis of lattice and direct-form imple-
mentations of linear-phase FIR filters using stochastic logic.

II. STOCHASTIC DIGITAL FILTERS

A. SC Inner-Product

Inner-products are fundamental components for stochastic
digital filter design. They break the range constraint of coeffi-
cients ([-1,1]) by integrating the ratio of a and b into selecting
signal of the multiplexer, which makes it possible to implement
stochastic digital filters with any arbitrary coefficients (see
[6]). In [6], only the architecture of SC inner-product with
input vector of size 2 was introduced. Fig. 1 presents the
architecture of an SC inner-product whose input vector size
is greater than 2. Consider the computation of the inner-
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Fig. 1: The architecture of a stochastic inner-product with input
vector size of 4.

product < (a0, a1, a2, a3) · (x0(n), x1(n), x2(n), x3(n)) >.
The internal nodes are described by:{

w1(n) =
1

|a0|+|a1| (a0x0(n) + a1x1(n))

w2(n) =
1

|a2|+|a3| (a2x2(n) + a3x3(n))

The final output is

w(n) =
a0x0(n) + a1x1(n) + a2x2(n) + a3x3(n)

|a0|+ |a1|+ |a2|+ |a3|

Notice that the output result is scaled by 1
|a0|+|a1|+|a2|+|a3| .

In the second level of tree structure, we need to com-
pute ((|a0| + |a1|), (|a2| + |a3|)) · (w1(n), w2(n)). Since the
coefficients (|a0| + |a1|) and (|a2| + |a3|) are positive, the
XNOR gates in the 2-input inner-product are not necessary.
Therefore, only nodes at the first level of the tree require full
implementation of 2-input inner-products. Other nodes can be
implemented using single multiplexers.

B. Implementation Considerations for Stochastic Digital Fil-
ters

1) Trade-off in delay element implementations: In [6],
stochastic FIR filters in direct-form were implemented using
SC inner-product module based on two approaches. Fig. 2(a)
shows one approach where the input signal x(n) is first
converted into a stochastic bit-stream, and then is passed
through the delay line. In Fig. 2(b), the input signal first passes
through the delay line, and then each signal from the delay line
is converted separately to a stochastic bit sequence.

TABLE I: Area consumption comparison of two implementa-
tions for stochastic direct-form FIR filters in terms of equiva-
lent 2-input NAND gates.

Type of Filter Order
Implementations 2 4 6
2’s complement 3243 6575 9147

Type-I 25761 51107 76450
Type-II 1453 2445 3762

Table I shows synthesis results of two implementations for
stochastic direct-form FIR filters. We assume that binary word-
length is 10, whereas the length of stochastic sequence is 1024.
The consumptions of area are given in terms of equivalent
two input NAND gates in 65nm libraries. Type-I corresponds
to the architecture in Fig. 2(a) and Type-II represents the
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Fig. 2: Two approaches to delaying input signals in stochastic
digital filters: the input samples are delayed in (a) stochastic
representation, (b) binary representation.

architecture shown in Fig. 2(b). Type-I architecture leads to
10-fold increase in hardware complexity, compared to Type-II
architecture, and it is even greater than traditional 2’s comple-
ment filters. This fact suggests that in a feasible architecture of
any kind of stochastic digital filters, signals should be stored
in delay elements in 2’s complement format even though more
SNGs are required.

2) Hardware efficiency of stochastic digital signal process-
ing system: In stochastic DSP implementations, the complexity
of an addition, that is, the cost of a multiplexer containing
SNGs, is significantly higher than that of an XNOR gate
which implements a multiplication. Therefore, the optimization
of stochastic filter architectures should focus on reducing the
number of additions in system.

III. STOCHASTIC LATTICE IMPLEMENTATION OF
LINEAR-PHASE FIR FILTERS

A typical lattice FIR filter is shown in Fig. 3. Notice that
2N adders are required for N -tap FIR lattice filter while a
direct-form FIR filter with the same order has only N adders.
It means the number of inner-products in stochastic lattice
implementations is twice as that of stochastic direct-form FIR
filters. Thus, hardware complexity and noise will increase due
to the increase in the number of computations.

z-1 z-1 z-1

-k1

-k1

-k2

-k2

x(n) y(n)

-kN

-kN

Fig. 3: The block diagram of an N -tap FIR lattice filter.

However, lattice structure of linear phase FIR filters can
be implemented with same number of computations as direct-
form structure. Assume that ki’s represent coefficients in
lattice structure. Directly applying coefficients-to-k-parameter
algorithm [12] for linear-phase FIR filters leads to singular-
ity which is caused by the symmetry of linear-phase FIR
coefficients [10]. Fig. 4 shows an alternative approach to
implementing lattice structure for an N -tap linear-phase FIR
filter, where L = bN+1

2 c and M = bN2 c.
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Fig. 4: The block diagram of an N -tap linear-phase FIR lattice
filter.

Assume the linear-phase FIR filter is described as y(n) =
b0x(n) + b1x(n − 1) + · · · + bNx(n − N), where bi =
bN−i. The key idea is applying Schur algorithm [13] only
for [b0, b1, · · · , bbN+1

2 c
] rather than all N + 1 coefficients to

avoid the singularity where ki = ±1 (see [10] for detailed
derivation).

An N -tap stochastic lattice implementation for linear-phase
FIR filter is described in Fig. 5. It computes the scaled
result y(n)/(2

∏m
i=1(1 + |ki|)). Coefficients s(ki) represent

the sign of ki. Full implementations of SC inner-products are
not required since out of four coefficients in a lattice stage
two are always unity. Stochastic-to-binary(S2B) modules [6]
are used to convert stochastic bit-streams to binary numbers.
The size of each delay element is determined by the word-
length of 2’s complement representation. All coefficients in the
architecture are represented by stochastic sequences. Unlike
stochastic lattice implementation of IIR filters [7], coefficients
do not require extra scaling since computation results of top
line and bottom line in a lattice stage are equivalently scaled
by SC inner-product modules.
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Fig. 5: The architecture of a stochastic implementation for an
N -tap linear-phase FIR lattice filter.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results for
stochastic direct-form implementation and lattice implementa-
tion for linear-phase FIR filters. The metrics of measurement
include fault-tolerance performance, and hardware complexity.

A. Simulation Results

A truncated speech signal from ICA ’99 Synthetic Bench-
marks is used as the input signal. In our simulation, the length
of the stochastic sequence is 1024 and the corresponding word-
length of 2’s complement representation is 10. A total of 5000
input samples are used for simulation.

Fig. 6 shows the spectrums of input and output signals
obtained from stochastic and ideal filters for a 7th-order linear-
phase FIR filter with cut-off frequency at 0.1π. Table II shows
the error-to-signal power ratio for stochastic direct-form and
lattice implementation of low-pass linear-phase FIR filters
with different orders and cut-off frequencies. From simulation
results, we observe that they have equivalent performance.
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Fig. 6: The spectrums of input signal, filter frequency response,
ideal output, stochastic direct-form output, and stochastic
lattice output for filtering using a 7th-order linear-phase FIR
filters with cut-off frequency at 0.1π.

TABLE II: The output error to signal power ratio for stochastic
linear-phase FIR filters of different orders and cut-off frequen-
cies.

(a) Stochastic direct-form implementation
Filter Low-pass Cut-Off Frequency
Order 0.1π 0.3π 0.5π 0.7π

3 0.0263 0.0250 0.0230 0.0221
5 0.0345 0.0313 0.0294 0.0266
7 0.0387 0.0346 0.0367 0.0362

(b) Stochastic lattice implementation
Filter Low-pass Cut-Off Frequency
Order 0.1π 0.3π 0.5π 0.7π

3 0.0261 0.0249 0.0240 0.0225
5 0.0338 0.0319 0.0286 0.0289
7 0.0401 0.0350 0.0416 0.0437

B. Hardware Complexity

The area consumption of stochastic FIR filters are evaluated
using 65nm technology. The architectures are synthesized
using Synopsys Design Compiler. We also compare hardware
complexity between traditional binary implementations and
stochastic implementations. In stochastic implementations, the
length of stochastic sequences is 1024, and binary numbers
in traditional implementations require 10 bits. Table III shows
hardware complexity of binary and stochastic implementations
for FIR filters.

TABLE III: The hardware complexity comparison of imple-
mentations for FIR filters in terms of equivalent 2-NAND
gates.

Type of Filter Order
Implementations 3 5 7
2’s complement 4573 7941 10593

stochastic direct-form (Type-II) 2091 3193 4186
stochastic lattice 1848 2716 3566
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The results show that stochastic implementations require
less hardware resources than traditional binary implementation
due to the low cost of arithmetic units. Moreover, stochastic
lattice implementations for linear-phase FIR filters consume
less hardware resources than stochastic direct-form imple-
mentations. Comparing Fig. 2(b) and Fig. 5, we can observe
that for an N -tap linear-phase FIR filter, a stochastic direct-
form implementation requires N 2-input inner-products while
a stochastic lattice implementation requires (2 · bN2 c + 1) 2-
input inner-product. The hardware complexities of the addi-
tions in two implementations are about the same. However,
there are N SNG modules in Type-II stochastic direct-form
implementation, whereas stochastic lattice implementation re-
quires (bN2 c + 1) SNG modules. Compared to SNG mod-
ules, hardware complexity of a S2B module can be ignored.
Therefore, the low hardware complexity of stochastic lattice
implementation is explained by the reduction of the number
of SNG modules.

C. Fault Tolerance Analysis

We performed fault-tolerance test for both stochastic FIR
filters by randomly injecting bit-flipping error at all internal
nodes and measuring the corresponding output error-to-signal
power ratio for each implementation. Real speech signals from
ICA ’99 Synthetic Benchmarks are used as the test inputs. The
length of the stochastic sequence is 1024. A total of 5000 input
samples are used. We control the level of injected soft error
by flipping certain percent bits of all internal computational
nodes in circuits. Flipped bits are selected at random.

A 7-tap linear-phase FIR filter with cut-off frequency at
0.1π is considered. The signals at marked nodes in Fig. 7 are
flipped for a specified percent at random. A total of 14 internal
nodes are considered in traditional binary and stochastic direct-
form implementations. The stochastic lattice implementation
has 12 internal computational nodes. Table IV and Fig. 8
present output error-to-signal power ratios due to bit-flipping.

TABLE IV: The output error to signal power ratios due to
random bit-flipping for different implementations for a 7th-
order low-pass linear-phase FIR filter with cut-off frequency
0.1π.

Type of Percentage of Bit-flipping
Implementations 0% 0.01% 0.05% 0.1% 0.5% 1%

traditional 0.0038 0.1043 0.5445 1.0917 5.0803 9.0240binary
stochastic 0.0465 0.0464 0.0462 0.0467 0.0488 0.0540direct-form
stochastic 0.0470 0.0472 0.0476 0.0478 0.0563 0.0820lattice

It is shown that bit-flipping almost has no impact on the
output accuracy of stochastic direct-form and lattice imple-
mentations when flipping percentage is under 0.5%. Starting
with 0.01% bit-flipping, the performance of the traditional
binary implementation is degraded significantly due to random
bit-flippings. The traditional implementation has an order of
magnitude less output error-to-signal power for very low rate
of bit-flippings but its output error-to-output ratio is more than
two orders of magnitude higher at fault rates of about 1%.

z-1 z-1 z-1 z-1 z-1 z-1 z-1

2

x(n)

3 4 5 6 7 8

 9 1211 13

1

10 14 y(n)

(a)

z-1 z-1 z-1 z-1 z-1 z-1 z-1
x(n)

1 2 3 4 5 6 7 8

 9 1211

13

10

14

y’(n)

MUX MUX MUX MUX

MUX MUX

MUX

(b)

z-1 z-1 z-4

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

s(-k1)

x(n)

y’(n)

s(-k1)

1/(1+|k1|)

1/(1+|k1|)

1/(1+|k2|)

1/(1+|k2|)

0.5

s(-k2)

s(-k2)

z-1

M
U
X

M
U
X

1/(1+|k3|)

1/(1+|k3|)

s(-k3)

s(-k3)

1

2

3

4

5

6

7

8

9

10

11

12

(c)

Fig. 7: The architectures for (a) traditional binary FIR filter,
(b) stochastic direct-form FIR filter and (c) stochastic lattice
implementation of linear-phase FIR filter, where random bit-
flippings occur at the nodes marked (SNG and S2B modules
are not shown in this figure).
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Fig. 8: Fault-tolerance test results of different implementations
for a 7th-order low-pass linear-phase FIR filters with cut-off
frequency 0.1π.

V. CONCLUSION

This paper has presented a novel implementation of a
linear-phase FIR digital filter using stochastic logic. Future
work will investigate a theoretical analysis of error-to-signal
ratio of the stochastic implementation. Future work will also
be directed towards comparison of the fault tolerance of the
proposed architecture with fault-tolerant two’s complement
architectures using partial triple modular redundancy [14].
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