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ABSTRACT
Sparse representation-based classification (SRC) has been re-
cently attracted a great interest among the signal processing
society. SRC applies a discriminative representation using
training samples to separate signals into their classes. In ex-
isting SRC methods, the dictionary size, which highly affects
the performance, is manually set. Moreover, they are linear
classifiers, and thus, they are not suitable for classifying non-
linear problems. In this paper, we propose a new classifica-
tion method by cascading a dictionary learning and the neural
network to take the advantages of both methods. We use dic-
tionary learning with efficient number of elements (DLENE)
to extract discriminative features. We also use the proposed
binomial classifier to detect kidneys in 3D ultrasound images.
A set of Caltech-101 images are used to compare the proposed
method with the state-of-the-art. The proposed kidney detec-
tion is evaluated by a set of ultrasound volumes. The results
confirm the superiority of our proposed method.

Index Terms— DLENE, Sparse Representation-Based
Classification, Dictionary Learning, Kidney Detection

1. INTRODUCTION

Sparse representation-based on classification (SRC) was first
proposed by Wright et al. [1], and then, rapidly expanded
by many researchers. The idea behind SRC is that, using the
sparse representation, samples of a particular class are more
likely represented by the training samples of the correspond-
ing class, rather than training samples from other classes.
Compared to conventional classification methods, SRC better
supports multi-subspace data structures [2]. For NC number
of classes, lets assume yi ∈ <m is an input sample, and
D = [D1, · · · , Dj , · · · , DNC

], is a database of training sam-
ples in which Dj = [y1,j , · · · , yNj ,j ] ∈ <m,Nj is a subset of
training samples belonging to the jth class. An input sample
(patch) is sparsely represented as,

min
xi

‖xi‖0 subject to ‖yi −Dxi‖2 < ε, (1)

where xi = [xi,1, · · · , xi,j , · · · , xi,Nj ] is a sparce vector
of coefficients, and xi,j is a subvector of coefficients corre-
sponding to the jth class. ε is the maximum reconstruction

error and relates to the noise level. Then, the classification
is performed simply by finding the minimum reconstruction
error among xi,js as,

class{yi} = min
j
‖yi −Djxi,j‖2. (2)

Several methods have been proposed to enhance SRC perfor-
mane, such as structured-SRC [2], Kernel-SRC [3] and SRC
steered discriminative projection [4]. The main challenge of
these approaches is that the dictionary requires large numbers
of training samples to adequately span subspaces belonging
to each class. This reduces the efficiency of representation,
and increases the interference of noise in sparse classifica-
tion. One immediate option to address this challenge is to
use dictionary learning which reduces the number of required
dictionary entries.

Since the introduction of K-SVD by Aharon et al. (2006)
[5], learnt-based dictionaries have became very popular in
sparse representation, since it improves the representation
power with a fewer number of learnt dictionary atoms. Dic-
tionary learning is generally formulated as,

〈D,X〉 = min
X,D

∑
i

‖yi −Dxi‖2 subject to ‖xi‖0 ≤ Γ, (3)

where X is the matrix of all sparse vectors, and Γ controls
the sparsity level. K-SVD [5] solves the equation (3) sim-
ply and efficiently by adopting singular value decomposition,
and thus, it has been widely used in different applications.
Although, the dictionary learning problem of (3) is power-
ful for sparsely representing the entire dataset, it does not
provide enough separability for different classes. Zhang and
Le (2010) [6] has proposed the discriminative K-SVD (D-
KSVD) method to learn dictionaries which are capable to dis-
tinguish patches of different classes, which is formulated as,

〈D,W,X〉 = minX,W,D
∑
i

∥∥∥∥( yi
λhi

)
−
(
D
λW

)
xi

∥∥∥∥
subject to ‖xi‖0 ≤ Γ,

(4)

where each hi ∈ <NC has a non-zero element in jth row
corresponding to the class of yi, and λ is the regularization
parameter. W is the weight matrix of the linear classifier,
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hi = Wxi. The equation (4) implies thatW andD are simul-
taneously trained while dictionary atoms are updated. This
results in supporting both representation and class discrimi-
nation powers. The solution of (4) is similar to the K-SVD
approach followed by an extra normalization step. The D-
KSVD method has been followed by other researches, such
as [7], [8] and [9]. As shown in [8], the number of dictio-
nary atoms plays an important role in specificity and sepa-
rability of the learnt-dictionary, though the existing methods
do not consider an adaptive selection of a dictionary size to
span sub-spaces of all classes. Moreover, all of them are lin-
ear classifiers in essence, and are not suitable for classifying
non-linear problems.

1.1. Our contributions

In this paper, we propose a new binomial classification
scheme for discriminating an object from its background
by cascading a dictionary learning method and the neural
network (NN) classifier [10]. The combination is used to
take the advantages of: (i) supporting multi-subspace data
structures by dictionary learning, and (ii) supporting non-
linear classification by NN. We use the dictionary learning
with efficient number of elements (DLENE) [11], which
adaptively selects the number of dictionary atoms based on
the structural complexity of the training dataset. DLENE
is used to separately learn two dictionaries for background-
class and object-class. Both dictionaries are learned for the
same reconstruction error, while the object-class dictionary
is learned with a higher sparsity level, compared with the
background-class dictionary. This results in increasing the
specificity of the object representation, and commonality of
non-object and background representation. After sparsely
representing training samples using the learnt dictionaries,
the DLENE output including the sparsity level and indexes
of major coefficients in sparse vectors are used as two sets of
features for training the NN. The proposed binomial classifi-
cation is used in a processing pipeline to automatically detect
kidneys in 3D abdominal ultrasound images. The rest of the
paper is organized as follows: in section (2), the proposed bi-
nomial classification, DLENE-NN, is represented in details;
Also, its application in kidney detection is described; Section
3 provides experimental setup and results of the proposed
method, and finally in section 4, conclusion, discussion, and
limitations are presented.

2. THE PROPOSED METHOD

In this section, we first describe the DLENE method, and
then, we apply it in our proposed classification to separate
samples of two classes: background (bg), and object (obj).
Finally, we apply the proposed method for kidney detection.

2.1. Using DLENE for Adaptive Dictionary Learning

DLENE [11] is an adaptive dictionary learning approach
which automatically selects the number of atoms, given two
parameters: (i) desired sparsity level, average number of non-
zero coefficients (ANNZCdes), and (ii) desired reconstruc-
tion error, root-mean-square-error (RMSEdes). DLENE
starts with an initial dictionary of two atoms, and then, au-
tomatically spreads the dictionary until the sufficient number
of atoms are obtained by capturing all data structures to meet
the desired parameters. DLENE is formulated as [11],

minND,X,D ND subject to
∑
i ‖yi −Dxi‖

2
2 ≤ NjRMSE2

des

and sum
Nj

k=1‖xk‖0 ≤ NjANNZCdes,
(5)

where ND is the number of atoms in D. We apply DLENE
to learn two dictionaries for two classes, Dbg and Dobj . We
impose two constraints on the dictionary learning problem to
provide discriminative learnt-based dictionaries as,

1. Each class is trained with its own training samples;

2. Dbg and Dobj are learned with equal RMSEdes, and
different sparsity levels, ANNZCobjdes < ANNZCbgdes.

The second constraint makesDobj to be specific to the object-
class training samples by having a small ANNZCobjdes, while
Dbg is trained with a high ANNZCobjdes to represent a wide
range of non-object data structures in more condensed format.

2.2. DLENE-NN: Binomial Classification

2.2.1. Training

After learning dictionaries, Dbg and Dobj , two types of dis-
criminative features are extracted from sparse vectors, xi:

1. Sparsity level: fSLi = ‖xi‖0;

2. indexes of maximum coefficients in sparse vectors,
f indi = [ind1, · · · , indNk

].

To find f indi , we first sort non-zero coefficients in xi in
the ascent order. Then, we select the first NK indexes.
Since Dobj is learned to represent an obj-sample with a few
non-zero coefficients, and Dbg is learned to represent a bg-
sample with more non-zero coefficients, the sparsity level,
fSLi , is a discriminative feature for separating samples of the
two classes. For each sample, xi we have a feature vector,
Fi = [fSLi , f indi,1 , · · · , f indi,Nk

]T ∈ <Nk+1. By collecting all
feature vectors for the bg and obj classes, two feature matri-
ces are obtained, F bg and F obj . These features along with
their corresponding labels, Lbg and Lobj are then used to train
a NN with NHL number of hidden layers.
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Algorithm 1: Pseudo-algorithm of Proposed Method

input : train:{yi}bg ,{yi}obj , eval: yi, ANNZC
bg
des,

ANNZCobjdes, RMSEdes, NHL,NK
begin

Training Step:
1. learning dictionaries:

Dbg = DLENE(ANNZCbg
des, RMSEdes, {yi}bg);

Dobj = DLENE(ANNZCobj
des, RMSEdes, {yi}obj);

2. Sparse coding:
Xbg = BatchOMP ([Dbg , Dobj ], {yi}bg);
Xobj = BatchOMP ([Dbg , Dobj ], {yi}obj);

3. Extracting features from training samples:
fSL
i = ‖xi‖0, and f ind

i = [ind1, · · · , indNk
] ∀i;

4. Creating feature matrices: F bg and F obj ;

5. Training NN:
Net = NNTrain([F bg , F obj ], [Lbg , Lobj ], NHL);

Classifying Step:

1. Sparse Coding: xin = BatchOMP ([Dbg , Dobj ], yin)

2. Extracting features:
fSL
in = ‖xi‖0, and f ind

in = [ind1, · · · , indNk
];

3. Creating feature vector: Fin;

4. Classify with NN: class{yin} = NNClassify(Net, Fin)

2.2.2. Classification

For classifying incoming samples into bg and obj classes, we
cascade sparse coding (using the learned dictionaries) and the
trained NN. For each incoming sample, yin, we calculate its
sparse vector, xin, using the batch OMP approach [12] with
D = [Dbg, Dobj ]. It is important to preserve the order of
dictionaries and their atoms in both training and Classifying
stages, since the indexes in sparse vectors are used as the fea-
tures. Then, the feature vector Fin is generated, and the sam-
ple is classified using the trained NN. The algorithm of the
proposed method is represented in Algorithm 1.

2.3. Application in Kidney Detection and Segmentation

Automated kidney diagnosis in 3-D ultrasound has a vital sig-
nificance in abdominal trauma detection. It has been shown
that an internal bleeding can be detected as a free fluid, which
appears as a dark region in an ultrasound [13], in a region be-
tween the left kidney and left lung [14]. Thus, kidney detec-
tion is a necessary step for trauma detection, and automated
kidney detection contributes to automated trauma detection,
which promotes emergency trauma diagnosis. The kidney has
a unique structure in 3-D ultrasound among all other internal
organs, which makes the kidney to be distinguishable. But,

the automated detection of kidney is very challenging: (1) low
contrast profile, inhomogeneous intensity profile and speckle
noise result in low quality ultrasound images; (2) There exist
gaps among the kidney boundary; and (3) the kidney might
be partially visible due to shadows caused by stones or mis-
aligned probe [15]. Due to these challenges, kidney detection
and segmentation using 3-D ultrasound has been only investi-
gated by a few researches [16] [17]. Here, we extend our pre-
vious kidney detection method [17] by applying the proposed
DLENE-NN. The block diagram of the proposed kidney de-
tection is shown in Fig 1.
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Fig. 1. Displaying block diagram of the kidney detection.

We collect a set of training volumes with their ground-
truth data (segmented kidneys as binarized masks). To reduce
speckle noise of each training volume, the anisotropic dif-
fusion filter is applied [18]. The training volumes and their
binarized masks are used for two purposes: (1) to train dictio-
naries and the NN, and (2) to generate a probabilistic kidney
shape model. Since the kidney shape has a high level of
variability, we split the kidney shape into 18 sub-volumes
to reduce the complexity of each sub-volume. The sub-
volumes are extracted by evenly splitting the shape into 3,
3 and 2 divisions along x-, y- and z- axes, respectively. To
achieve this, we select a training volume as a reference, and
register all other training volumes on the reference volume,
based on the affine transformation with manually specified
landmarks. Then, the registered volumes are divided on the
same lines into 18 sub-volumes, and finally, the divided sub-
volumes of each training volume is transformed back into
its original space. Now, for each sub-volume, we use the
corresponding binarized mask to extract patches which are
placed on the kidney, and use the patches to learn a dictio-
nary for the corresponding sub-volume using the DLENE
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method. The obj-class dictionary is formed by combining the
learnt-dictionaries of all the sub-volumes. Then, we extract
non-kidney patches from all training volumes, and use the
patches to learn the bg-class dictionary. Having the regis-
tration transforms of the training volumes on the reference
volume, we generate a probabilistic kidney shape model by
finding the average of registered masks [17], and we call it,
the probabilistic kidney shape model (PKSM ).

In the kidney detection stage, an input volume, Vin, is first
enhanced by the anisotropic diffusion filter. Then, patches
are extracted from the enhanced volume, and are classified
with the trained DLENE-NN classifier. The classification re-
sult, Cinshows the probability of a voxel in the input volume
to belong to obj-class. Then, the maximum matching is ob-
tained by calculating the maximum spatial cross correlation
of PKSM and Cin.

3. EXPERIMENTS AND RESULTS

We developed two sets of experiments, aiming to evaluate
the performance of the proposed DLENE-NN: (1) comparing
DLENE-NN with D-KSVD [6], and (2) evaluating the pre-
sented kidney detection method and compare with our previ-
ously presented method [17].

For the first experiment, we used the Caltech-101 database
[19] (30 volumes of car-side category), and manually gen-
erated masks to specify cars from backgrounds. The ob-
jective of the first experiment is to classify each pixel into
obj (car) and bg (non-car) classes. We trained our DLENE-
NN using 6 arbitrarily selected images, and evaluated the
methods with the rest of images. The patch sizes for both
DLENE-NN and D-KSVD are set to 21 × 21 pixel2. In
both methods, patches are extracting with 90% of pixel over-
lapping. For learning dictionaries with DLENE, param-
eters are set to RMSEdes = 0.045, ANNZCobjdes = 5

and ANNZCobjdes = 12. We have empirically selected
NHL = 30. For the training D-KSVD method, we set
the sparsity level Γ = 16, and the dictionary contains
1024 atoms. We applied the Dice’s coefficient to calcu-
late the detection accuracy. For D-KSVD and DLENE-NN,
the classification results are dice = 0.2584 ± 0.0698 and
dice = 0.3385 ± 0.0948. Classification of a sample image
from the Caltech-101 database is shown in Fig 2. According
to the obtained results, the DLENE-NN is performing better
than D-KSVD on average.

For the second experiment, we have utilized a database
of 28 3-D ultrasound images, in which 14 volumes are cor-
rect Morison’s pouch views with kidneys, and 14 volumes
are randomly selected without kidneys. For the volumes
with kidneys, ground truth data of their kidneys as binarized
masks are manually generated. 4 binarized masks are used
to generate PKSM, and the rest are used for evaluating our
kidney detection. The detection accuracy is computed us-
ing (#true positive detections+#true negative detections)

(#total number of detections) , where

  
(a) (b) 

  
(c) (d) 

 Fig. 2. Classifying pixels belonging to a car from the caltech-
101 database [19]. (a) original image, (b) binarized mask, (c)
D-KSVD, and (d) DLENE-NN.

the detection accuracy for the previous approach [17] and
DLENE-NN are obtained as %92.86 and %96.43, respec-
tively. The class separability index, NC1(µC1−µ)2+NC2(µC2−µ)2

σ2
C1+σ

2
C2

,
of the DLENE-NN based Kidney detection and our previous
method [17] are 30.75 and 27.31, respectively. The DLENE-
NN based kidney detection provides higher accuracy, how-
ever its computational cost is also relatively higher than [17].

4. CONCLUSION

We have proposed a new sparse representation-based clas-
sification by cascading an adaptive size dictionary learning,
DLENE, with the neural network. The discriminativity of the
sparse representation comes from two characteristics of the
proposed method: (i) learning a separated dictionary for each
of the classes, and (ii) setting a low ANNZC for obj-class
and a high ANNZC for bg-class. By combining DLENE and
NN, we take the advantage of both SRC methods and NN
classifier: (i) Our method is able to span multiple sup-spaces
using sparse representation-based features; (ii) Since we use
the NN classifier, the proposed classification method is able
to classify non-linear problems. The proposed method is ap-
plied to detect kidneys in 3D abdominal ultrasound images.
As a limitation of the proposed method, it does not support
multi-classes problems, which can be addressed in our future
research.
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