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ABSTRACT 

 

When analyzing fMRI data to study the brain process, one 

faces two challenges: (i) the correct noise distribution and 

(ii) the brain dynamics. In general, the brain dynamics are 

modeled under the simplifying, but wrong assumption that 

the noise follows a Gaussian distribution. In this paper, we 

model the brain dynamics under the correct Rice 

distribution. We implement the hemodynamic response 

function into a Rice framework and apply the standard 

General Linear Model (GLM) which is linear-in-the-

parameters and can easily be solved. Next, the statistical 

properties of the least squares estimator are investigated via 

a simulation experiment. 

 

Index Terms— Biomedical signal processing, functional 

magnetic resonance imaging (fMRI), hemodynamic 

response, Rice distribution, parameter estimation. 

 

1. INTRODUCTION 

 

The most popular diagnostic technique to study and 

visualize human brain activity is functional Magnetic 

Resonance Imaging (fMRI). Analyzing fMRI data remains a 

difficult task, mainly for two reasons. First of all, the fMRI 

signals to be processed are strongly disturbed by Rician 

noise [1], [2]. Secondly, the human brain has a memory 

effect and, hence, responds with a delay. When imaging the 

human brain to detect brain activity, the brain dynamics or 

so-called hemodynamics can be neglected. However, when 

studying and analyzing the brain process, the brain 

dynamics need to be taken into account [3]. 

The standard dynamic modeling approach to handle fMRI 

signals is the General Linear Model (GLM) [4], in which the 

fMRI signal is basically modeled as the convolution of the 

fMRI paradigm with a hemodynamic response function [5], 

disturbed by additive Gaussian noise. This approach is 

however only valid for high signal-to-noise ratios (SNRs), 

since in that case the true Rician noise distribution 

converges weakly to a Gaussian distribution [6]. For low 

SNRs, the assumption of additive Gaussian noise is no 

longer valid such that the true Rician noise characteristics 

should be taken into account.  

Two upcoming fMRI trends indicate that the presence of 

low SNRs in fMRI will become more and more dominant. 

Firstly, for patient safety reasons it is desirable to reduce the 

magnetic field strength. Secondly, open MRI scanners 

which were originally designed for children, claustrophobic 

and obese persons will become the scanners of the future. 

These scanners use lower field strengths than their closed 

counterpart. In both trends, a reduction in field strength goes 

hand in hand with a reduction in image quality or SNR, for 

the same measurement time. This shows that the true noise 

distribution of fMRI signals can no longer be ignored. 

In this paper, we will investigate the quality of the general 

linear model under Rician noise conditions. The outline is as 

follows: First, a brief introduction to fMRI is given. Next, 

the modeling framework is discussed in Section 3; the 

model identification in Section 4; and the simulation 

experiment in Section 5.  Finally, conclusions are drawn in 

Section 6. 

 

2. FUNCTIONAL MAGNETIC RESONANCE 

IMAGING 

 

2.1 Measurement principle 

In fMRI measurements, typically two orthogonal 

measurement coils are used, decomposing the induced 

current in a real and an imaginary component. Due to 

measurement errors, physical and physiological noise 

sources [7], each of these two currents is disturbed by 

additive, Gaussian distributed noise. Hence, the induced 

current �(�) is given by 

 �(�) ≜�(� cos(���), ��) + ��(� sin(���), ��) (1) 

where ≜ symbolizes the equality in distribution, �� is the 

frequency of the applied magnetic field, � is the amplitude 

of the induced current, �(�, �) denotes a Gaussian 

distribution with mean � and variance �, and � indicates the 

imaginary unit.  

An fMRI signal is in essence complex-valued, but since the 

phase information of �(�) exhibits a time-varying behavior 

[8], [9], it is considered unfruitful. As a result, only the 

magnitude of the fMRI signal is retained for further 

analysis. 
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2.2 Rice distribution 

The price paid for discarding the phase information is that 

the noise is no longer additive and Gaussian distributed, but 

instead follows a Rice distribution [1], [2]. 

�(�) = |�(�)| ≜ Rice(�, ��) (2) 

The Rice distribution is characterized by two parameters: 

the amplitude � of the periodic signal and the variance �� of 

the disturbing Gaussian noise source. It is known that for 

high SNRs, the Rice distribution in (2) converges to a 

normal distribution �(�, ��) [6].  

The probability density function (pdf) of Rice data is given 

by 

 ��(�) = �	�� exp  −�� + ��2�� # $� %����& (3) 

with $�(. ) the zero-order modified Bessel function of the 

first kind [11]. 

 

2.3 Hemodynamic response  

The goal of fMRI is two-folded: (1) detecting activated 

brain regions and (2) characterizing the physiological 

process of activated brain regions, due to an external 

stimulus. For the second objective, the hemodynamics (i.e., 

the blood flow) needs to be taken into account [3]. Indeed, 

upon stimulus, the activated brain areas require more 

oxygen and glucose to function properly. This implies a 

change in blood flow which is known as the hemodynamic 

response (HDR).  

A popular kernel function to describe the unknown 

hemodynamic response is the double-Gamma function [5], 

[12], since it corresponds well to the true physiological brain 

reaction. The double-Gamma function is represented by 

ℎ(�|)) = *+ �,-.+	Γ(0+) exp(1+�) + *� �,2.+	Γ(0�) exp(1��) (4) 

where Γ(. ) denotes the Gamma function, *+ ≥ *� and ) = [*+, 0+, 1+, *�, 0�, 1�] ∈ ℝ8. 

Transforming (4) to the frequency domain by means of the 

Laplace transform gives: 

9(:|)) = *+ 1(: − 1+),- + *� 1(: − 1�),2  (5) 

with : ∈ ℂ the Laplace variable. 

 

3. MODELING FRAMEWORK 

 

3.1 Statistical model 

Generally, the observed fMRI signals are modeled as the 

convolution of the fMRI paradigm =(�) with the (unknown) 

hemodynamic response, disturbed by Gaussian noise >?(�). 

The General Linear Model describing the measurements is 

then given by [5] 

�Gauss(�) = ℎ(�|)) ∗ =(�) + >?(�) (6) 

with ∗ the convolution operator. Due to the additive nature 

of >?(�), the GLM representation in (6) is no longer valid 

under Rice conditions. 

In order to combine the true Rician noise distribution and 

the hemodynamics, we introduce the hemodynamic 

response in (2). This results in  

�Rice(�) ≜ Rice(ℎ(�|)) ∗ =(�), ��) (7) 

with ℎ(�|)) as defined in (4).  

 

3.2 Linear regression model for the HDR 

Estimating the parameters ) is a problem that is nonlinear-

in-the-parameters. To avoid this, the estimation problem is 

transformed into a problem that is linear-in-the-parameters 

by applying a linear regression model for the hemodynamic 

response.  

The canonical values of the parameters ) in (4) are derived 

from experimental data and physiological knowledge. In the 

software package SPM, these values are )D = [11.71, 7, −1.11, −3.06, 13, −1.11] [13]. By 

implementing, )D into (4), the canonical HDR is obtained ℎD(�) = ℎ(�|)D). Since the canonical parameter values are 

only a ‘rough’ estimate of the true parameter values, they 

need to be corrected according to the experimental data, as 

described in [14]. In this paper, it is assumed that the 

canonical HDR approximately holds with a possible 

unknown dispersion I and time delay J. As a result, the 

hemodynamic response is approximated by  

ℎ(�|)) ≈ ℎ(I(� − J)|)D) (8) 

Next, a first order Taylor approximation is applied to (8) 

around the canonical parameter vector (I = 1, J = 0): 
ℎ(�|)) ≈ ℎ(�|)D) + L MMI ℎ(I(� − J)|)D)NOP+QP�

(I − 1)
+ L MMJ ℎ(I(� − J)|)D)NOP+QP�

J 

(9) 

After applying the chain-rule to (9), we obtain the following 

result: 

Proposition 1. Under assumption (8), the HDR can be 

approximated as 

ℎ(�|)) ≈ ℎ(�|)D) + MM� ℎ(�|)D)�(I − 1)
− MM� ℎ(�|)D)J 

(10) 
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The first term in (10) is known as the canonical response, 

the second term as the dispersion derivative, and the last 

term as the temporal derivative [14], [15]. These different 

terms are illustrated in Figure 1. 

 
Based on Proposition 1, the following linear regression 

model ℎRS(�|T) is obtained for the unknown hemodynamic 

response ℎ(�|)): 
ℎRS(�|T) = T+ℎ(�|)D) + T� MM� ℎ(�|)D)�

− TU MM� ℎ(�|)D) 
(11) 

In order not to overload the paper, we will take on the 

simplifying notation ℎRS = ℎRS(�|T) and ℎD = ℎ(�|)D). In 

matrix notation, (11) then becomes 

ℎRS = VℎD 						MℎDM� �					 − MℎDM� W X
T+T�TUY = Z. T (12) 

with Z the regressor matrix, and T the parameters to be 

estimated. 

 

4. MODEL IDENTIFICATION 

 

The unknown hemodynamic response in (7) can now be 

modeled using the linear regression model in (11). Hence, 

we obtain: 

�Rice ≜ Rice(��, ��)	≜ [�\�� cos(�0�), �2] + ��(�� sin(�0�), �2)[ (13) 

with the noise-free fMRI signal �� defined as 

�� = ℎRS ∗ = = (Z ∗ =). T = Z^. T (14) 

Since for high SNRs, the Rice distribution weakly 

converges to a normal distribution [6], we formulate the 

following property:  

Proposition 2. The measured fMRI signal converges to a 

normal distribution 

�Rice ∆→�(��, ��)		if		 range(y�)σ → ∞ (15) 

The parameters T can be identified in Least Squares (LS) 

sense by solving the following optimization: 

TgRh = argminj |�Rice − Z^. T|� (16) 

The least squares solution is then given by 

 TgRh = (Z^kZ^).+Z^k�Rice (17) 

with l the transpose operator. The following holds for the 

Rician LS estimator. 

Theorem 1. Under Rice conditions, the following 

properties hold for the least squares estimator:  

ΕnTgRho = T� + �
cov\TgRh] = 0 (Z^kZ^).+��

 (18) 

with T� the true parameter values, � the bias term, and the 

factor 0 representing the efficiency loss. 

For high SNRs, Theorem 1  reduces to � = 0 and 0 = 1. 

We will now study how the bias vanishes and the efficiency 

loss drops to 1 as a function of the SNR. 

 

5. SIMULATION EXPERIMENT 

 

In the simulation experiment, we used a block paradigm 

consisting of 6 periods with 40 samples per period, 

corresponding to 20 samples for the activation phase and 20 

samples for the rest phase. The block paradigm is modeled 

as a block wave equaling 1 for activation and 0 for rest. The 

sampling frequency was set to 0.75Hz. 

The goal is to estimate the parameters T = [T+			T�			TU] of 

the linear regression model (11) in the Rice framework and 

to compare the results with the classical Gaussian approach. 

First, the true parameters T were set in order to compute the 

noise-free fMRI signal �� as given in (14). For the true 

hemodynamic response, we used the double-gamma 

function as defined in (5) with parameters ) = )D + ∆)D.  
The noisy fMRI signal is obtained in the Rice framework by 

applying (13), and in the Gaussian framework by adding 

normally distributed noise to ��. In Figure 2, an example of 

simulated fMRI signals are shown (for an SNR equal to 1), 

together with the block paradigm (black). The noise-free 

signal is given in blue, and the noisy signal is plotted in red 

and green for respectively, the Rice and Gaussian 

framework.  

Figure 1:  Illustration of the double-gamma function and its 

partial derivatives. 
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Since the SNR (defined as �� �⁄ ) influences the signal’s 

distribution, we explore different SNRs by varying the 

standard deviation (std) from 0.1 to 20. For each SNR, we 

performed a Monte Carlo simulation of 10000 runs in which 

we computed the least squares estimator and studied its 

statistical properties. In Figure 3, the root mean square error 

(RMSE) and the bias for parameter T+ are shown for both 

the Rice (red) and the Gaussian (green) framework. The 

results for the other parameters are similar.   

 
It can be seen that for high SNRs the bias in the Rice 

framework converges to the bias of the Gaussian framework 

which is zero. Hence, asymptotically there is a good fit of 

the parameters of the linear regression model in (11) used to 

describe the hemodynamic response.  

The bias of the different model parameters is plotted on a 

log-log scale in Figure 4. It follows that for a sufficiently 

high SNR the bias decreases almost linearly. 

  
In Figure 5, one realization of the model output is plotted 

together with the noise-free signal, for an SNR equal to 1 

and 5. For SNR=1, the true shape is captured by the model, 

but there exists an overestimation. For SNR=5, we observe a 

very good fit between the modeled signal in the Rice 

framework and the true brain response. 

 
 

6. CONCLUSION 
 

In this paper, the impact of Rice distributed data on the 

existing GLM framework was investigated. This study 

revealed that asymptotically, for high SNRs, the least 

squares estimator of the GLM is not influenced by the Rice 

distribution. As a result, the presented GLM approach is 

successful for modeling the brain dynamics. However, for 

fMRI signal detection this approach overestimates the SNR, 

which implies the need for a low SNR correction for the LS 

estimator in order to compensate for the Rician noise 

characteristics. 
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Figure 4: Bias of the estimated parameters in the Rice 

framework: rst (blue), rsu (red) and rsv (green). 
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