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ABSTRACT

We determine the power spectrum of an ideal neuron which en-
codes information using a pulse interval modulation schemein con-
tinuous time. We develop this by considering the rigorous deriva-
tion of the Digital Pulse Interval Modulation (DPIM) codingscheme
spectra of L. Vangelista et al. in the limit of the coding slotsize ap-
proaching zero. We show in this limit the spectrum is identical to that
of a filtered renewal process frequently used to model neuroscience
time series data. Using this renewal theory equivalence we then use
the ‘Fundamental Isometry Theorem’ developed by Win & Ridolfi
to show that introducing firing time jitter (as a simple modelfor
noise effects) removes non-Poisson structure and reduces the utility
of spectral feature selection. Lastly we show with sufficient jittering
that the Bartlett spectrum of any renewal process reduces tothat of
a Poisson process, with a spectral density consistent with Carson’s
theorem for shot noise.

Index Terms— DPIM, renewal process, Fundamental Isometry
Theorem, neural time series analysis

1. INTRODUCTION

Digital Pulse Interval Modulation (DPIM) is a communications
scheme where information content is transmitted in the variable
number of idle slot times between pulses [1]. The DPIM infor-
mation transmission methodology is ideally suited for optical fibre
communications where classical amplitude or frequency modulation
techniques are non-trivial. The wide bandwidth offered by optical
fibre motivates the use of particularly narrow pulses with low duty
cycles which allows for low average, but high peak power. This
property provides accurate signal detection at the receiver end dur-
ing transmission over a noisy channel [2]. Carrying the information
between the pulses also eliminates the need for the pulse times to be
defined relative to a central clock.

These properties of robust transmission over noise, lack ofa central
clock and minimal energy expenditure are also ideal for information
transmission of neurons. Indeed the concept of neurons transmitting
information in the space between firing events has been considered
as far back as [3] where it was shown that a DPIM coding scheme
offers a far greater channel capacity than a binary on/off keying
(OOK) coding scheme. Fundamentally the debate about rate vstime
dependent coding is abouthow neurons encode information in the
timing between spikes. Nevertheless there is a key difference be-
tween neuron information exchange and DPIM on communications
channels. DPIM processes are discrete time processes embedded
in continuous time. Although the signals being sent and received
are occurring in continuous time, the pulse intervals are constrained
to be separated by a discrete number of packets, termed slotsor

chips. Neurons have no such embedding and the firing times can
occur at any point along the continuous time line. This issueis
philosophically complicated by the fact that at some fine enough
level of temporal resolution a neuron must consider a spike arriving
at two different times to be the same spike.

This paper will do the following: Firstly simplify the closed form
expression for the DPIM power spectra developed in [1]. Secondly
show in the limit of unconstrained firing times (transforming from
discrete to continuous firing times) that the DPIM spectra isequiva-
lent to that of a renewal process, which is frequently used tomodel
neuroscience time series data. We then show using the Fundamental
Isometry Theorem developed in [4] that randomly displacingthe fir-
ing times attenuates, but does not distort, the non-Poissonstructure
of the measured spectrum. Lastly we show that both purely periodic
& Poisson (uniformly distributed) firing patterns are resistant to
this spectral dampening, whereas firing regimes in between these
extremes are susceptible, with consequences for spectral feature
selection.

2. SPECTRAL EQUIVALENCE OF DPIM AND RENEWAL
THEORY

The time intervals between pulses in DPIM are driven by some en-
coding strategy and thus is strictly speaking deterministic. Nonethe-
less from the receiver’s perspective, who does not know the message
a priori, the series of gaps between the pulses is a random process.
Neurons are most likely similar in the sense that the action potential
timings are generated by highly nonlinear processes, with exception-
ally rich and complex synaptic/dendritic connections, such that from
the ‘perspective’ of a neuron the arriving pulse times are random
variables. This is the basis for mathematical modeling of neuron
firing times as stochastic point processes.

The time history of DPIM,v(t), can be represented as follows
[1]:

v(t) =

m=+∞∑

m=−∞

g(t− τmT ) (1)

Whereg(t) is the pulse shape, characteristically a rectangle with
a given duty cycle,T is the slot length andτm is a set of random
integers indicating when a pulse occurs in terms of numbers of slots.

The power spectrum of this process contains both a continuous
and discrete part which are both functions of the energy spectrum,
G(f), of the pulse shape. They are also both dependent on the the
average pulse rateνb which is the inverse of the expected length
(in number of slots) between pulses. The continuous component,
Rc(fT ), termed theBartlett spectrum in point process literature
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[5], is best understood from the Weiner-Khinchtine theoremas the
Fourier transform of the autocorrelation structure of the pulse times.
The discrete component forms a Dirac comb with Dirac delta distri-
butionsδ(· · · ) spacedfm = m/T, (m ∈ Z) apart. This discrete
component arises because the expectation of the signal is non zero
(E [v(t)] 6= 0) [6]. Intuitively the repetition of the Dirac delta pulses
can be understood because the discrete process is embedded in the
continuous time, creating an effective Nyquist frequency (the inverse
of the slot time) for the frequency structure to be periodic about. The
spectrum of the DPIM process is determined in [1] as:

SDPIM(f) =
1

T
|G(f)|2 Rc,DPIM(fT )

︸ ︷︷ ︸

Continuous

+
+∞∑

m=−∞

1

T 2
|G(f)|2 ν2

b δ(f − fm)

︸ ︷︷ ︸

Discrete

(2)

TheBartlett spectrum is given in [1] by the following evaluation of
the Z transform on the unit circle:

Rc,DPIM(u)
︸ ︷︷ ︸

Bartlett Spectrum

= νb

[

νb − 1 + 2Re

(

X(z)

∣
∣
∣
∣
z=e2πju

)]

(3)

WhereX(z) can be understood to be the Z transform of the cumu-
lative probabilities associated with the spacing (in number of slots)
between two arbitrary pulses. We use an alternate definitionof X(z)
defined in [7]:

X(z) = 1 +X(z)

∞∑

λ=0

p[λ]z−λ − νb

∞∑

λ=0

p[λ]

λ−1∑

k=0

z−k (4)

Wherep[λ] represents the probability of the pulse interval beingλ
slots long. We algebraically re-arrange (4) and evaluate the z trans-
form on the unit circle as defined in (3) to show that this term de-
pends on the characteristic function associated with the pulse arrival
time random variables:

X(ej2πu) =
1

1−
∞∑

λ=0

p[λ]e−2πjuλ

−νb ·








∞∑

λ=0

p[λ]
λ−1∑

k=0

e−2πjuk

1−
∞∑

λ=0

p[λ]e−2πjuλ








︸ ︷︷ ︸

simplify

(5)

We will now develop a simplified expression for the bracketed
term in (5) (labeled simplify) by recognizing that the nested sum in
the numerator can be re-writtenexcept at zero frequency using the
geometric series formula and identifying that the probability mass
function,p[λ], must sum to unity:

∞∑

λ=0

p[λ]

λ−1∑

k=0

e−2πjuk =

∞∑

λ=0

p[λ]

(
1− e−2πjuλ

1− e−2πju

)

=

(

1−
∞∑

λ=0

p[λ]e−2πjuλ

)

1− e−2πju
(6)

Substituting (6) into the numerator of the bracketed part of(5)
(labeled simplify) and cancelling the common denominator &nu-
merator term yields the following simpler expression:








∞∑

λ=0

p[λ]
λ−1∑

k=0

e−2πjuk

1−
∞∑

λ=0

p[λ]e−2πjuλ








=
1

1− e−2πju
(7)

Therefore:

X(ej2πu) =
1

1−
∞∑

λ=0

p[λ]e−2πjuλ

− νb ·
1

1− e−2πju
(8)

Note the identity:

2Re

(
1

1− e−2πju

)

= 1 (9)

Thus taking the real part of (8) and using (9) yields:

2Re
[

X(e2πju)
]

= 2Re







1

1−
∞∑

λ=0

p[λ]e−2πjuλ







− νb (10)

Substituting (10) into (3), adding and subtracting unity yields:

Rc,DPIM(u) = νb






1 + 2Re







∞∑

λ=0

p[λ]e−2πjuλ

1−
∞∑

λ=0

p[λ]e−2πjuλ













(11)

Thus we can write the power spectrum for the DPIM scheme in
[1] as:

SDPIM(f) =
νb
T
|G(f)|2

[
+∞∑

m=−∞

νb
T
δ(f −

m

T
)

+ 1 + 2Re







∞∑

λ=0

p[λ]e−2πjfλT

1−
∞∑

λ=0

p[λ]e−2πjfλT







]

(12)

Note that if the pulse slot time approach zero, the expected
gap (in units of the number of slots) between pulses will approach
infinity. Thus the average rate of pulses (in units of the inverse of the
number of slots)νb, will also approach zero. These limits will both
converge to zero such that their ratio remains the statistical average
rate of the number of pulses,N(t), in units of time:

lim
T→0
νb→0

νb
T

= ν. = lim
t→∞

E

(
N(t)

t

)

(13)

Note that as the pulse slot time approaches zero the discretecompo-
nent of the spectrum will change from a train of Dirac delta pulses
(spaced 1/T apart) to a single Dirac delta pulse (them = 0 solution)
centered at zero frequency.

lim
T→0
νb→0

+∞∑

m=−∞

ν2
b

T 2
δ(f −

m

T
) −→ ν2δ(f) (14)
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Also note that reducing the pulse slot length to zero allows the pulse
times to occur at any point on the continuous time line. Thus the
characteristic function will transform from a periodic DTFT for a
discrete random variable to a non-periodic continuous Fourier trans-
form for a continuous random variable:

∞∑

λ=0

p[λ]e−2πjuλ −→

∫ +∞

0

p(t)e−2πftdt ≡ H(ω) (15)

WhereH(ω) is the characteristic function of the Inter Spike In-
terval (ISI) of firing times. Thus the DPIM spectrum in the contin-
uum reduces to:

lim
T→0
νb→0

SDPIM(f) = ν|G(f)|2
[

1 + 2Re

(
H(ω)

1−H(ω)

)

︸ ︷︷ ︸

Rc,DPIM

+νδ(f)

]

(16)

3. NEURAL RENEWAL SPECTRUM PROPERTIES

This spectrum (16) is the same as that derived for filtered renewal
processes in [8], [9], [10]. Renewal theory describes a general class
of continuous time stochastic processes where the time between
events (in this case the firing of an action potential) is an indepen-
dent identical distributed (i.i.d.) random variable. There is a wealth
of literature using renewal processes to model neuroscience time
series data [11], [12], [8]. A renewal process can be described by its
renewal density function, m(t), which can be written as an infinite
series of convolutions of the ISI density function:

m(t) =
∞∑

n=0

p(t)(∗)np(t) ≡ p(t) + p(t) ∗ p(t) + · · · , t ≥ 0 (17)

Each term in the series expansion of (17) represents the proba-
bility of any spike (the first, second, third etc ...) occurring at time
t. Therefore the renewal density function can be seen as a ‘spiking
density function’, indicating the probability of seeing a spike, irre-
spective of which spike, at time t. Note that this function does not
integrate to unity, so the renewal density is not a true probability
density. It can be shown by the Erdos-Feller-Pollard theorem [13]
that the renewal density function asymptotes to the mean firing rate
limt→∞ m(t) = ν. This result can also be obtained in the less
general case by applying the final value theorem to the Laplace
transform of (17).

This renewal density function can be related to the Bartlet spec-
trum [8]:

2Re

(
H(ω)

1−H(ω)

)

= F {m(t) +m(−t)− ν} (ω) (18)

Thus the Bartlett spectrum can be seen to represent the devia-
tion of the spiking density from uniformly distributed firing (Poisson
counting statistics) as a function of frequency. This suggests that
measurement of the Bartlett spectrum can provide insight into the
underlying neural firing patterns. Indeed spectral analysis of neural
time series data is widespread [8], [14] and feature selection based
upon spectral properties of neurons modeled as point processes (a
generalisation of renewal processes) was considered in [15].

A significant problem with this approach is that this Bartlett spec-
trum of the renewal process is remarkably resistant to closed form
analysis. For example it is not possible to develop closed form ex-
pressions for the conditions for the presence of peaks, their locations
or width or how rapidly the spectrum decays to zero. Instead we
are forced to rely on heuristics to understand the Bartlett spectrum.
For example if a neuron is firing perfectly periodically we would
expect to see peaks in the power spectrum at the firing rate andits
harmonics. Purely periodic firing represents one of the few cases we
can develop an analytic expression:

H(ω)periodic =

∫
∞

0

δ(t−
1

λ
)eiωt = e(iω)/λ

∞∑

n=1

H(ω) +

∞∑

n=1

H∗(ω) =

∞∑

n=−∞

δ(ω − nλ)

Rc,DPIM(ω)periodic = ν + ν2
∞∑

n=−∞

δ(ω − n2πλ)

As the variance increases we would expect to see the peaks get
wider, and the higher order harmonics begin to disappear. Asthe
variance is increased such that the firing pattern becomes maximally
random (that is, it becomes aPoisson counting process) there would
be no statistically expected deviation from uniformly distributed fir-
ing times and thus we would expect the Bartlett spectrum to bea
constant. This is another case where an analytic expressionfor the
Bartlett spectrum can be developed, and it can be shown [9], in
agreement with Carson’s theorem the Bartlett spectrum is a constant:

H(ω)Poisson =
λ

λ− iω
−→ 2Re

(
H(ω)

1−H(ω)

)

= 0,

Rc,DPIM(ω)Poisson = ν + ν2δ(f)

These two firing patterns represent extremes of the Weibull fam-
ily of distributions for the ISI random variable:

p(t)ISI =

(
k

λ

)(
t

λ

)k−1

e−(t/λ)k , t, λ, k ≥ 0 (19)

Whereλ andk are termed the scale & shape parameter respectively.
When k is unity the maximally random Poisson statistics are re-
covered, whereas periodic firing occurs in the limit of the shape
parameter,k, approaching infinity. The variance of the Weibull
distribution is given by:σ2 = λ2Γ(1 + 2/k)− µ2. Notice that ask
increases the variance decreases, and the Poisson solutionhas max-
imal variance. Between the two extremes of periodic and Poisson
count firing statistics we can observe the Bartlett spectrumby para-
metrically fitting the ISI density function to the Weibull distributions
and tuning the shape parameter. Examples of this process areshown
for k = 1,5,10 and validate this heuristic approach.

There are two important points to observe from figure 1. Firstly,
for the neuron firing with physiological rate of 30Hz there isno
structure (beyond constant behavior) for all classes of firing (at least
from the Weibull family) in the Bartlett spectrum above roughly 100
Hz. This intuitively makes sense, as you would not expect to see
correlations in neuron firing patterns at frequencies whichare not
physiological possible for the neuron to fire at. Secondly there is
no structure in the Bartlett spectrum for a Poisson countingprocess
beyond constant amplitude equal to the mean firing rate.

1009



0 50 100 150
0

2

4

6

8

Frequency (Hz)

R
at

e 
N

or
m

al
is

ed
 P

ow
er

Bartlett Spectrum for Different Weibull Distributed Firing Patterns
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Fig. 1. Bartlett spectrum of Weibull distributions with different
shape parametersk=1,5,10 for a neuron with mean firing rate of
30Hz. Notice that as the firing becomes less periodic (k decreases)
the higher order harmonics will disappear, the remaining peaks get
smaller and wider until eventually with Poisson counting statistics
(k=1) the Bartlett spectrum shows no features.

4. SPECTRAL EFFECT OF JITTERING

In this section we explore how robust the spectral features of a
neuron following renewal statistics are to noise. The noisesources
on a neuron in a network are exceptionally complex. We model
noise effects to the PIM encoding scheme in the simplest possible
fashion of Gaussian displacements of the firing times. In themost
general sense we can consider that noise will introduce variation
to the membrane voltage, which in turn will introduce variation to
when the neuron reaches threshold and fires, thus jittering the firing
times. These ideas were formalised in [16] with a leaky integrate
and fire model of a neuron subject to Gaussian white noise input.
We show that the effect of the jittering is to attenuate, but not distort,
the non-Poisson features of the Bartlett spectrum.

We consider the effect of the jittering on the spectral properties
of the Bartlett spectrum rather than the full time series power spec-
trum. This is equivalent to considering the action potentials to be
Dirac delta pulses (g(t) = δ(t), |G(f)|2 = 1). This spectrum can
be determined with aid from the Fundamental Isometry Theorem.
Briefly this theorem allows for the determination of the spectrum of
a marked point process when the spectrum of the original process
and the statistics of themarks are known. It can be shown [4] that
the jittering is easily accounted for as follows:

Rc,DPIM(ω)jittered = |φz(2πf)|
2Rc,DPIM(ω) + ν(1− |φz(2πf)|

2) (20)

We consider that the firing times are independently jittered
by a Gaussian random variable with meanµJ and varianceσ2

J .
Thus the absolute value squared of the characteristic function is
|φz(2πf)|

2 = e−σ2

jf
2

. Note that the effect of jittering is to ran-
domise firing patterns, remove correlation structure and thus make
the observed firing times more uniform. Using (20) the Gaussian
jittered Bartlett spectrum is given by:

Rc,DPIM(ω)jittered = ν

[

1 + 2e−σ2

jω
2

Re

(
H(ω)

1−H(ω)

)]

(21)

There are two points to notice about (21). Firstly jitteringre-
moves the non-Poisson structure, which represents deviations from
uniformly distributed patterns, from the Bartlett spectrum at a rate
exponentially proportional to the jittering variance. Secondly jit-
tering has no effect on the Bartlett spectrum of a Poisson process,
which already has uniform distributed firing times.

Figure 2 shows the jittered Bartlett spectrum of Weibull processes

with shape parameters ofk=5 (pseudo-periodic) &k=10 (strongly
periodic) for different strengths of jittering (σJ = 0.01, 0.025, 0.05
seconds). As a comparison the time constant of a leaky integrate
and fire model of a Sub Thalamic Nucleus is 0.01 seconds [17].
Notice that, as expected, the larger the variance of jitter the more the
features of the Bartlett spectra are reduced but not distorted. Notice
also that the spectra of the more periodic Weibull process ismore ro-
bust to jittering. This intuitively makes sense, as we expect it would
require jitter of a higher variance to transform the more ‘strongly’
periodic processes to a maximally random Poisson process.

This result shows that the spectra of both the maximum (Poisson)
and minimum (purely periodic) information entropy firing distri-
butions are highly resistant to firing time jitter, whereas patterns in
between these extremes are sensitive. This is especially true for
nearly Poisson (k ≈ 1) firing patterns. This is interesting for neural
spectral feature selection because neurons can have highlyvariable
firing patterns under different anatomical and physiological condi-
tions. For example cortical neurons alone can display firingstatistics
ranging from Poisson to weakly periodic depending on anatomical
area, anaesthetic state and behavioural task [18].
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(a) Weibull Bartlett Spectrum,k =5
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(b) Weibull Bartlett Spectrum,k =10

Fig. 2. Rate normalised jittered Bartlett Spectrum of a Weibull pro-
cess with shape parameters (k) = 5 & 10, mean firing rate of 30Hz
for different strengths of jittering (σJ )

5. CONCLUSION

We have shown that the spectrum of a neuron performing a DPIM
encoding strategy in continuous time is equivalent to a renewal pro-
cess. We have shown that non-Poisson effects in the firing statistics
manifest as features which may be detected in the low (<100Hz) fre-
quency portion of the measured spectrum. We have shown that the
effect of firing time jitter (as a simple model for noise) is toattenuate
(but not distort) the non-Poisson features of the spectrum.We have
shown that with sufficiently noisy jitter, all non-Poisson structure
in the Bartlett spectrum is lost. We have identified that the spectra
of near Poisson firing statistics are especially sensitive to this jitter.
These identified properties may help guide future work attempting
to estimate firing statistics of neurons from spectral analysis.
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