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ABSTRACT chips. Neurons have no such embedding and the firing times can

We determine the power spectrum of an ideal neuron which en2ccur at any point along the continuous time line. This isisue

codes information using a pulse interval modulation schenoen- Fr\'/”cl’sof‘:h:ﬁa”); T?mpll'cfi‘tid br¥ tr:enf"’r‘st t?at r?tijo:ne f".lg.’g o
tinuous time. We develop this by considering the rigorousvee Vel of temporal resolution a neuron must consider a Smkeeg

tion of the Digital Pulse Interval Modulation (DPIM) codisgheme at two different times to be the same spike.
spectra of L. Vangelista et al. in the limit of the coding Sate ap-
proaching zero. We show in this limit the spectrum is ideaitio that
of a filtered renewal process frequently used to model neigose
time series data. Using this renewal theory equivalenceheme tise
the ‘Fundamental Isometry Theorem’ developed by Win & Ridol
to show that introducing firing time jitter (as a simple mode
noise effects) removes non-Poisson structure and redneegility
of spectral feature selection. Lastly we show with suffitjétering
that the Bartlett spectrum of any renewal process reductsatmf
a Poisson process, with a spectral density consistent vatedd'’s
theorem for shot noise.

This paper will do the following: Firstly simplify the clodeform
expression for the DPIM power spectra developed in [1]. Sdiyo
show in the limit of unconstrained firing times (transforgnifiom
discrete to continuous firing times) that the DPIM spectragsiva-
lent to that of a renewal process, which is frequently usedaddel
neuroscience time series data. We then show using the Femdaim
Isometry Theorem developed in [4] that randomly displad¢hrefir-
ing times attenuates, but does not distort, the non-Poissanture
of the measured spectrum. Lastly we show that both purelpgiier
& Poisson (uniformly distributed) firing patterns are résig to
this spectral dampening, whereas firing regimes in betwheset

Index Terms— DPIM, renewal process, Fundamental Isometry extremes are susceptible, with consequences for speetatiré
Theorem, neural time series analysis selection.

1. INTRODUCTION 2. SPECTRAL EQUIVALENCE OF DPIM AND RENEWAL
THEORY

Digital Pulse Interval Modulation (DPIM) is a communicat®
scheme where information content is transmitted in theatdei  The time intervals between pulses in DPIM are driven by some e
number of idle slot times between pulses [1]. The DPIM infor- coding strategy and thus is strictly speaking deterministionethe-
mation transmission methodology is ideally suited for cgitifibre  less from the receiver’s perspective, who does not know thesage
communications where classical amplitude or frequencyutation  a priori, the series of gaps between the pulses is a randooegso
techniques are non-trivial. The wide bandwidth offered byiaal Neurons are most likely similar in the sense that the actaigrgial
fibre motivates the use of particularly narrow pulses witlt futy  timings are generated by highly nonlinear processes, witbion-
cycles which allows for low average, but high peak power. sThi ally rich and complex synaptic/dendritic connections hsthat from
property provides accurate signal detection at the receid dur-  the ‘perspective’ of a neuron the arriving pulse times arelom
ing transmission over a noisy channel [2]. Carrying therimiation  variables. This is the basis for mathematical modeling afroe
between the pulses also eliminates the need for the pules timbe  firing times as stochastic point processes.
defined relative to a central clock.

The time history of DPIM,v(t), can be represented as follows
These properties of robust transmission over noise, laekaeitral — [1]:

clock and minimal energy expenditure are also ideal forrmation m=+o0
transmission of neurons. Indeed the concept of neuronsrtiting v(t)= Y gt—7mT) @
information in the space between firing events has been deresi m=—00

as far back as [3] where it was shown that a DPIM coding schem&Vhere g(¢) is the pulse shape, characteristically a rectangle with
offers a far greater channel capacity than a binary on/ofirke  a given duty cyclel" is the slot length and,, is a set of random
(OOK) coding scheme. Fundamentally the debate about rabmes  integers indicating when a pulse occurs in terms of numbiestots.
dependent coding is abohbw neurons encode information in the

timing between spikes. Nevertheless there is a key difterdre-  The power spectrum of this process contains both a contsuou
tween neuron information exchange and DPIM on communicatio and discrete part which are both functions of the energytspac
channels. DPIM processes are discrete time processes detbed G(f), of the pulse shape. They are also both dependent on the the
in continuous time. Although the signals being sent andivede average pulse rate, which is the inverse of the expected length
are occurring in continuous time, the pulse intervals arestained  (in number of slots) between pulses. The continuous comypne

to be separated by a discrete number of packets, termedaslots R.(fT), termed theBartlett spectrum in point process literature
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[5], is best understood from the Weiner-Khinchtine theomsithe Substituting (6) into the numerator of the bracketed paiGpf
Fourier transform of the autocorrelation structure of thisptimes.  (labeled simplify) and cancelling the common denominatonu&
The discrete component forms a Dirac comb with Dirac delstridi  merator term yields the following simpler expression:

butionsé(- - - ) spacedf,, = m/T,(m € Z) apart. This discrete

component arises bepguse the expe_gtation of th_e signahigero i ey Ailef%juk
(E [v(t)] # 0) [6]. Intuitively the repetition of the Dirac delta pulses A=0 k=0 _ 1 @
can be understood because the discrete process is embaeditied i 1_ e Ale—2mjur T 1 —e—2miu
continuous time, creating an effective Nyquist frequerg (nverse Agop[ le
of the slot time) for the frequency structure to be periodiowt. The
spectrum of the DPIM process is determined in [1] as: Therefore:
; 1 1
1 2 X( j27u — _ A 8
S = —|G(f)?R. T ™) = 2 — ®)
opim (f) 7 |G Re.opm(fT) - ez 1—e2mi
Continuous A=0
oo Note the identity:
1
+ Y GO~ ) @) )
e (L) - ©
Discrete
Thus taking the real part of (8) and using (9) yields:
The Bartlett spectrum is given in [1] by the following evaluation of
the Z transform on the unit circle:
2Re[ X (¢™7")] = 2Re |-, o
Reppiv(u) = v |y — 14 2Re| X(2) 3 —2mjur
_,,_/ Y e2miu 1-— )\zop[)\]e J

Bartlett Spectrum

Where X (z) can be understood to be the Z transform of the cumu- Substituting (10) into (3), adding and subtracting unitglgs:

lative probabilities associated with the spacing (in nuntdfeslots)

: e 5= p[Ae 2
between two arbitrary pulses. We use an alternate defirofiof(z)

defined in [7]: Reppm(u) = wp [14+2Rel 22—
1= 37 p[AJe=2miur
oo A=0
X(z) =14+ X(2) Zp)\]z_ —m,Zp)\]ZZ (4) 11)
A=0 A=0

Thus we can write the power spectrum for the DPIM scheme in
Wherep[)] represents the probability of the pulse interval belng  [1] as:
slots long. We algebraically re-arrange (4) and evaluaezttrans-
form on the unit circle as defined in (3) to show that this teren d Vb 2
pends on the characteristic function associated with theegrrival Soem(f) = ?'G(f” Z Té(f - T)

“+ oo

time random variables: m=—o0
E p[)\]e—%rjf)\T
xX@E@y = — L + 1+42Re| 2= (12)

; 1— Y p\e—2mifT
S p— BT

oo A—1 ) Note that if the pulse slot time approach zero, the expected
> pAl Y e Pk gap (in units of the number of slots) between pulses will aaph
—yy - | 22 = k=0 (5) infinity. Thus the average rate of pulses (in units of theiggef the
1— > p[Ae—2miur number of slots),, will also approach zero. These limits will both
A=0 converge to zero such that their ratio remains the staistiverage
o rate of the number of pulse8(¢), in units of time:
plify
We will now develop a simplified expression for the bracketed ” N()
term in (5) (labeled simplify) by recognizing that the nesseim in lim — =v.= lim E ( ) (23)
the numerator can be re-writtemcept at zero frequency using the Z,i% T e

geometric series formula and identifying that the probigbihass

function, p[\], must sum to unity: Note that as the pulse slot time approaches zero the dismatpo-

nent of the spectrum will change from a train of Dirac deltésps
1— 6_271-Ju/\) (spaced 1/T apart) to a single Dirac delta pulse (ttre 0 solution)

oo A—1
—2mjuk
> D e = Zp[/\ ( —o centered at zero frequency.

A=0 k=0 A=0
1— S p)\e—%rjuk) ' +oo V2
(- Em © fm S M- () (14)
- 1 — e—27ju vp—0 m=—0c0
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Also note that reducing the pulse slot length to zero alldvespulse A significant problem with this approach is that this Battkgtec-
times to occur at any point on the continuous time line. Thes t trum of the renewal process is remarkably resistant to diégen
characteristic function will transform from a periodic DTFor a  analysis. For example it is not possible to develop closeah fex-
discrete random variable to a non-periodic continuousiEotnans-  pressions for the conditions for the presence of peaks, ltezitions
form for a continuous random variable: or width or how rapidly the spectrum decays to zero. Instead w
are forced to rely on heuristics to understand the Bartfettgum.
o oo For example if a neuron is firing perfectly periodicgl_ly Weu_vlnb
ZPP\](;%JM N / p(t)e > 'dt = H(w) (15)  expect to see peaks in the power spectrum at the firing ratétand
= 0 harmonics. Purely periodic firing represents one of the f@ses we
can develop an analytic expression:
WhereH (w) is the characteristic function of the Inter Spike In-

terval (ISI) of firing times. Thus the DPIM spectrum in the tion I o ° 1\ wt  (iw)/A
uum reduces to: (w)periodic = /O 5t — )™ =e

H(w H"(w) = 6w —nA
lim Sppm(f) = l/|G(f)\2 1+2R9(M) + 6(f):| n; ( )+nX::1 ) n;oc ( )
T50 1— H(w) oo
v, —0 5

Re ppPIm RC,DPIM(w)periodic = v+v Z 5(w — 1’L27T>\)
(16) e

As the variance increases we would expect to see the peaks get
wider, and the higher order harmonics begin to disappearthés
variance is increased such that the firing pattern becomgsmaby
random (that is, it becomesRaisson counting process) there would

be no statistically expected deviation from uniformly dtmfited fir-

ing times and thus we would expect the Bartlett spectrum ta be
constant. This is another case where an analytic exprefsidhe
Bartlett spectrum can be developed, and it can be shown 9], i
agreement with Carson’s theorem the Bartlett spectrumasstant:

3. NEURAL RENEWAL SPECTRUM PROPERTIES

This spectrum (16) is the same as that derived for filteredwah
processes in [8], [9], [10]. Renewal theory describes a gemtass
of continuous time stochastic processes where the timeeeetw
events (in this case the firing of an action potential) is atepen-
dent identical distributed (i.i.d.) random variable. Téés a wealth
of literature using renewal processes to model neurosei¢inoe
series data [11], [12], [8]. A renewal process can be desdriy its
renewal density function, m(¢), which can be written as an infinite

series of convolutions of the ISI density function: H (w)poisson — — 2Re _Hw) ) _ 0,
A—iw 1— H(w)
> 2
m(t) = > p(O()"p(O) =p(®) +p(t) £ p(t) +---, 20 (a7)  Heopm(@leossn = v H173(])
n=0

) ) ) These two firing patterns represent extremes of the Weitnnl f
Each term in the series expansion of (17) represents theprobily of distributions for the ISI random variable:

bility of any spike (the first, second, third etc ...) occogiat time
t. Therefore the renewal density function can be seen asildrigp k
density function’, indicating the probability of seeing aile, irre- p(t)si = (/\) (
spective of which spike, at time t. Note that this functioreglmot

integrate to unity, so the renewal density is not a true fidiba
density. It can be shown by the Erdos-Feller-Pollard theoj&3]
that the renewal density function asymptotes to the meamgfate
lim; 0. m(t) = v. This result can also be obtained in the less
general case by applying the final value theorem to the Laplac
transform of (17).

t k—1 "
X) e WV e Nk>0 (19)

Where\ andk are termed the scale & shape parameter respectively.
When k is unity the maximally random Poisson statistics are re-
covered, whereas periodic firing occurs in the limit of theysh
parameter.k, approaching infinity. The variance of the Weibull
distribution is given bys? = A\®T'(1 + 2/k) — 1. Notice that as
increases the variance decreases, and the Poisson sdlagonax-
imal variance. Between the two extremes of periodic andg®ais
count firing statistics we can observe the Bartlett spectoymara-
metrically fitting the 1SI density function to the Weibullsiibutions
H(w) and tuning the shape parameter. Examples of this procesbanas
2Re (m) =F{m(t) + m(-t) - v} (w) (18)  for k = 1,5,10 and validate this heuristic approach.

This renewal density function can be related to the Baribetcs
trum [8]:

Thus the Bartlett spectrum can be seen to represent the-deviaThere are two important points to observe from figure 1. Fjirst
tion of the spiking density from uniformly distributed figr{Poisson  for the neuron firing with physiological rate of 30Hz therenis
counting statistics) as a function of frequency. This sstg¢hat  structure (beyond constant behavior) for all classes ofgifat least
measurement of the Bartlett spectrum can provide insigbttine  from the Weibull family) in the Bartlett spectrum above rolg100
underlying neural firing patterns. Indeed spectral analgéineural  Hz. This intuitively makes sense, as you would not expecte® s
time series data is widespread [8], [14] and feature selediased correlations in neuron firing patterns at frequencies wizih not
upon spectral properties of neurons modeled as point pesgs  physiological possible for the neuron to fire at. Secondbréehis
generalisation of renewal processes) was considered jn [15 no structure in the Bartlett spectrum for a Poisson courgitagess

beyond constant amplitude equal to the mean firing rate.
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Bartlett Spectrum for Different Weibull Distributed Firing Patterns
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Fig. 1. Bartlett spectrum of Weibull distributions with differen
shape parameters=1,5,10 for a neuron with mean firing rate of
30Hz. Notice that as the firing becomes less periokidécreases)
the higher order harmonics will disappear, the remainirakpeget
smaller and wider until eventually with Poisson countingtistics
(k=1) the Bartlett spectrum shows no features.

4. SPECTRAL EFFECT OF JITTERING

In this section we explore how robust the spectral featufea o
neuron following renewal statistics are to noise. The newmgrces
on a neuron in a network are exceptionally complex. We mod
noise effects to the PIM encoding scheme in the simplestiless
fashion of Gaussian displacements of the firing times. Inntiost
general sense we can consider that noise will introduceatiani
to the membrane voltage, which in turn will introduce vaaatto
when the neuron reaches threshold and fires, thus jittemmring
times. These ideas were formalised in [16] with a leaky irdeg
and fire model of a neuron subject to Gaussian white noiset.inpu
We show that the effect of the jittering is to attenuate, lnitdistort,
the non-Poisson features of the Bartlett spectrum.

We consider the effect of the jittering on the spectral priese
of the Bartlett spectrum rather than the full time series @ogpec-
trum. This is equivalent to considering the action potdstia be
Dirac delta pulsesg(t) = 6(t), |G(f)|> = 1). This spectrum can
be determined with aid from the Fundamental Isometry Thaore
Briefly this theorem allows for the determination of the gpam of

a marked point process when the spectrum of the original process

and the statistics of thearks are known. It can be shown [4] that
the jittering is easily accounted for as follows:

Reppim(w iitered = |- (27 f))? Reppim(w) + v(1 — |¢- (27 f)?) (20)

We consider that the firing times are independently jittere
by a Gaussian random variable with mean and varianceo?.
Thus the absolute value squared of the characteristic ibmés
|p-(2mF)|? = e=31°. Note that the effect of jittering is to ran-
domise firing patterns, remove correlation structure and thake
the observed firing times more uniform. Using (20) the Gaussi
jittered Bartlett spectrum is given by:

)] (21)

There are two points to notice about (21). Firstly jitterireg
moves the non-Poisson structure, which represents daviafiom
uniformly distributed patterns, from the Bartlett speatrat a rate
exponentially proportional to the jittering variance. 8edly jit-
tering has no effect on the Bartlett spectrum of a Poissonga®
which already has uniform distributed firing times.

H(w)

— H(w)

2 2
RC,DPIM(UJ)jinered =V |i1 +2e¢7 %% Re ( 1

Figure 2 shows the jittered Bartlett spectrum of Weibullqasses
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with shape parameters &E5 (pseudo-periodic) &=10 (strongly
periodic) for different strengths of jitteringr¢ = 0.01, 0.025, 0.05
seconds). As a comparison the time constant of a leaky Bitegr
and fire model of a Sub Thalamic Nucleus is 0.01 seconds [17].
Notice that, as expected, the larger the variance of jittentore the
features of the Bartlett spectra are reduced but not déstoftiotice
also that the spectra of the more periodic Weibull proces®i® ro-
bust to jittering. This intuitively makes sense, as we ekfegould
require jitter of a higher variance to transform the moreosgly’
periodic processes to a maximally random Poisson process.

This result shows that the spectra of both the maximum (Bojss
and minimum (purely periodic) information entropy firingsti-
butions are highly resistant to firing time jitter, whereasterns in
between these extremes are sensitive. This is especiabyfar
nearly Poissonk =~ 1) firing patterns. This is interesting for neural
spectral feature selection because neurons can have vatiéple
firing patterns under different anatomical and physiolabgmndi-
tions. For example cortical neurons alone can display fstagstics
ranging from Poisson to weakly periodic depending on ane@m
Flrea, anaesthetic state and behavioural task [18].

Jittered and Non Jittered Bartlett Spectrum of k = 5 Weibull Process

—Non-Jittered

--0,=0.01 - Jittered

- - - UJZD 025 - Jittered
OJZO 05 - Jittered | |
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(a) Weibull Bartlett Spectrunk =5

Jittered and Non Jittered Bartlett Spectrum of k = 10 Weibull Process

— Non-Jittered
--0,=0.01 - Jittered

---0,=0.025 - Jittered| |
0,20.05 - Jittered
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(b) Weibull Bartlett Spectrun¥ =10

4F19. 2. Rate normalised jittered Bartlett Spectrum of a Weibutl-pr

cess with shape parametekg € 5 & 10, mean firing rate of 30Hz
for different strengths of jitterings(s)

5. CONCLUSION

We have shown that the spectrum of a neuron performing a DPIM
encoding strategy in continuous time is equivalent to awehero-
cess. We have shown that non-Poisson effects in the firitigtata
manifest as features which may be detected in the +080QHz) fre-
quency portion of the measured spectrum. We have showntthat t
effect of firing time jitter (as a simple model for noise) isitenuate
(but not distort) the non-Poisson features of the spectiia have
shown that with sufficiently noisy jitter, all non-Poissomusture

in the Bartlett spectrum is lost. We have identified that thectra

of near Poisson firing statistics are especially sensibvis jitter.
These identified properties may help guide future work gtémg

to estimate firing statistics of neurons from spectral asialy
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