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ABSTRACT

With the advent of microarrays, arose the need to analyze gene
expression data. Tools for building gene regulation networks
are indeed of high interest for regulatory relationship sketching
and gene interaction prediction. Given all pairwise gene regu-
lation information available, we propose to determine the pres-
ence of edges in the final gene regulatory network by adopting
a convex optimization formulation. Our energy minimization
strategy includes a regularization term accounting for the dif-
ference of connectivity of particular genes (i.e. transcription
factors), and we employ proximal methods to compute the op-
timal solution. The resulting algorithm, called "Brane relax",
outperforms state-of-the-art methods while keeping a reduced
computational cost.

Index Terms— Bioinformatics, Genetic expression, Graphs,
Optimization, Proximity operator

1. INTRODUCTION

The ability to extract plausible gene regulatory relationships
is of paramount importance for improving the knowledge of
living organism mechanisms. It benefits medical applications
(identification of genes involved in diseases such as cancer)
as well as biotechnologies (study of micro-organisms involved
in biofuel production), among others. For this purpose, biolo-
gists acquire high-throughput data: for each gene, short signals
related to the gene expression are obtained. Unfortunately,
recovering insightful information from this set of signals be-
comes particularly challenging given their variability and their
often incomplete and noisy nature. An additional difficulty
arises when the number of observations is critically lower than
the number of genes, often exceeding several thousands. There-
fore, the construction of Gene Regulation Networks (GRNs)
constitutes a fundamental problem that can be addressed from
a graph signal processing perspective. A recent survey of
state-of-the-art approaches is provided in [1]. Standard GRN
inference methods define a score of expression similarity be-
tween pairs of genes to weight the edges of the network. The
large majority of existing approaches reformulate the GRN in-
ference reconstruction as a detection problem where thresholds
serve to select edge subsets: only edges scoring larger than the
threshold are kept in the final graph. This is typically the case
for the Context Likelihood of Relatedness (CLR) approach
[2], which computes a combination of Z-scores on the mutual
information between gene expression profiles. CLR is widely

used in biostatistics thanks to its interesting trade-off between
a satisfactory prediction accuracy and a relatively low com-
plexity. Recently, performance improvements were attained
by the random-forest-based GENIE3 method [3], computing a
ranking of the plausible edge presence in the final graph.

One of the limitations of the aforementioned methods is
however that they weakly account for prior knowledge about
the expected graph structure. Indeed, biological systems raise
tremendous challenges in knowledge inference. Their represen-
tations as complex networks [4] entail an infinite number of po-
tential structures and solutions, given the available approximate
models and the reduced number of observations. Consequently,
complementing networks with putative structural properties [5]
is pervading biological system analysis. By incorporating such
a knowledge in the GRN inference process, one can expect it to
become more reliable, more robust to uncertain data, and more
meaningful from a biological standpoint. Co-expression tran-
sitivity is proposed in [6] for genes with dissimilar expression
profiles. Biological structures are probed with perturbations in
[7]. Such approaches, constraining forms of sparsity in the in-
ferred networks [8], often imply well-chosen measures such as
a thresholded Hamming similarity [9] or a Frobenius norm be-
tween transition matrices [10].

The proposed approach also resorts to judicious choices of
penalty functions, linking different sets of gene functions. Ac-
tually, genes that are not known to encode a transcription factor
(TF), i.e. which are not identified as gene expression regula-
tors, typically interact with less genes than others. In order to
enforce a low connectivity degree to these particular genes, we
introduce a novel convex formulation for GRN construction,
encompassing this structural information.

The paper is organized as follows: in Section 2, we propose
a novel variational approach for building GRNs, and we design
an efficient algorithm to solve the related optimization problem
in Section 3. Section 4 presents comparative results on a stan-
dard dataset coming from DREAM4 challenge [1], demonstrat-
ing substantial improvements over conventional approaches.

2. VARIATIONAL MODEL

2.1. Original problem formulation

Inferring a gene regulatory network G∗ aims at selecting,
among all possible edge combinations, a set of edges E∗
reflecting the regulatory interaction between genes. Let g
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denote the number of genes, and let xi,j define the binary
label of the edge ei,j . Specifically, xi,j = 1 if an inter-
action exists between gene i and gene j, where (i, j) ∈ E
with E = {(i, j) ∈ {1, . . . , g}2 | i 6= j}, and xi,j = 0
otherwise. Our goal is to design a cost function whose
minimum value is reached for the desired value of vector
x = (xi,j)(i,j)∈E ∈ {0, 1}|E| with |E| = g(g − 1). Such an
optimal solution is expected to lead to the desired regulatory
network.

Fig. 1: Our goal is to infer a GRN from transcriptomic data.
In this illustration, transcription factors are represented in red,
other genes in green.

Our data thus correspond to a fully connected non-reflexive
graph G(V, E) consisting of a set of nodes V = (v1, · · · , vg), a
set of g(g− 1) edges E = (ei,j)(i,j)∈E weighted by real values
stored in a vector w = (wi,j)(i,j)∈E of dimension g(g − 1).
Typically, the weight value wi,j of an edge ei,j with (i, j) ∈ E
is a function of a correlation or mutual information measure
between expressions of genes i and j. Fig. 1 illustrates the
aforementioned graph processing task. Our model takes the
following actions:

• Favor the selection of real regulatory relations based on
the gene expression similarity (wi,j)(i,j)∈E.

• Promote the selection of edges linked to a putative tran-
scription factor, by defining weights (λi,j)(i,j)∈E de-
pending on the nature of nodes i and j.

• Assuming that a target gene is regulated by a small num-
ber of transcription factors, constrain the connectivity of
the ’nonTFs’ to be close to a given small number d.

It can be translated into the following optimization problem:

minimize
x∈S

∑
(i,j)∈E

wi,j
2

(1− xi,j)︸ ︷︷ ︸
favors the presence of
edges of strong weight

+

∑
(i,j)∈E

λi,j
2
xi,j︸ ︷︷ ︸

favors the presence
of TF-nonTF edges

+µ
∑
i∈V\T

φ

(
g∑
j=1

xi,j − d

)
︸ ︷︷ ︸

enforces the degree of a sub-
set of nodes being close to d

, (1)

where µ ∈ [0,+∞[ is a regularization constant, φ : R → R is
a convex function, T ⊆ V denotes the set of putative transcrip-
tion factors and

S =
{

(xi,j)(i,j)∈E ∈ {0, 1}|E| |(
∀(i, j) ∈ E

)
xi,j = xj,i

}
. (2)

The latter constraint set serves to express both the Boolean
constraint and the fact that the graph is undirected. For this
reason too, the following symmetry properties may be assumed
to be met by vectors w and λ = (λi,j)(i,j)∈E:(

∀(i, j) ∈ E
)

wi,j = wj,i, λi,j = λj,i. (3)

2.2. Problem relaxation and vectorial formulation

Since the cost function of Problem (1) is not necessarily sub-
modular, it is not amenable to optimization via efficient com-
binatorial optimization methods, e.g. graph-cut-based methods
[11]. To overcome this difficulty, we relax the integrality con-
straint on x, by replacing S by its convex hull:

Ŝ =
{

(xi,j)(i,j)∈E ∈ [0, 1]|E| |(
∀(i, j) ∈ E

)
xi,j = xj,i

}
. (4)

The relaxed optimization problem then becomes solvable in an
efficient manner by using convex optimization methods. It can
be reexpressed more concisely by reindexing the variables on
the edges with a single index l, and taking into account explic-
itly the symmetry constraint, so yielding

minimize
x∈[0,1]L

L∑
l=1

(
wl(1− xl) + λlxl

)
+ µ

P∑
i=1

φ
( L∑
k=1

Ωi,kxk − d
)
, (5)

where L = g(g − 1)/2 and P is the cardinality of V \ T .
In an equivalent vector form, the optimization problem can be
reexpressed as

minimize
x∈RL

f1(x) + f2(x), (6)

where f1 is the indicator function of the unit hypercube:

(∀x ∈ RL) f1(x) = ι[0,1]L(x) =

{
0 if x ∈ [0, 1]L

+∞ otherwise,

and

(∀x ∈ RL) f2(x) = w>(1L − x) + λ>x+ µΦ(Ωx− d),

with 1L = [1, . . . , 1]> ∈ RL. Hereabove, Φ is the separable
function defined as Φ: RP → R : (yi)1≤i≤P 7→

∑P
i=1 φ(yi),

d = d1P , and Ω = (Ωi,k)1≤i≤P,1≤k≤L is a binary matrix
of size P × L such that, for every i ∈ {1, . . . , P} and k ∈
{1, . . . , L}, Ωi,k = 1 if k corresponds to the index of an edge
linking i to some vertex of the graph.

3. OPTIMIZATION STRATEGY

In this part, we show that it is possible to derive a fast algorithm
for solving the optimization problem formulated in the previ-
ous section (when µ 6= 0). Our developments will be grounded
on recent results concerning the Forward-Backward algorithm,
and more specifically the use of variable metrics derived from
the Majorize-Minimize principle [12], combined with a block
coordinate descent strategy [13]. Tutorial introductions to prox-
imal optimization can be found in [14, 15].
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3.1. Majorant construction

Assuming that function φ is differentiable and has a β-
Lipschitzian gradient with a Lipschitz constant β ∈]0,+∞[,
Problem (6) can be solved with the help of a Forward-Backward
algorithm. This first-order method is however known to be
pretty slow and our aim will be to provide an accelerated
version of it. For this purpose, we will apply the Majorization-
Minimization principle to f2 by building a quadratic majorant
of this smooth function. From the descent lemma [16, Theorem
18.15(iii)], for every (x,x′) ∈ (RL)2,

f2(x) ≤ f2(x′) + (x− x′)>∇f2(x′)

+
µβ

2
(x− x′)>Ω>Ω(x− x′) (7)

So, a quadratic majorant function of f2 at x′ is

Q(x,x′) = f2(x′) + (x− x′)>∇f2(x′)

+
µβ

2
(x− x′)>A(x− x′), (8)

where A is a symmetric positive definite matrix majorizing
Ω>Ω (i.e. A − Ω>Ω is semi-definite positive). Instead of
directly minimizing f1 + f2, we design our optimization al-
gorithm to minimize the surrogate function f1 + Q(·,xn) at
iteration n, where xn is the previous iterate. This leads to the
iteration

xn+1 = prox
γ−1
n A,f1

(
xn − γnA−1∇f2(xn)

)
, (9)

where, for more flexibility, we have substituted a parameter
γn ∈]0,+∞[ for the factor (µβ)−1. Recall that the proxim-
ity operator of function γnf1 relative to the metric induced by
A is given by

(∀x ∈ RL) prox
γ−1
n A,f1

(x)

= argmin
z∈RL

γnf1(z) +
1

2
‖z − x‖2A, (10)

where ‖ · ‖A is the weighted norm of RL defined as

(∀z ∈ RL) ‖z‖A = (z>Az)1/2. (11)

It must be emphasized that working with A instead of
Ω>Ω, or a scaled version of the Hessian of f2 at xn, allows
us to avoid the cumbersome inversion of a large-size matrix,
provided that A has a simple structure. In our case, we propose
to choose a simple diagonal form for this matrix. According to
[12, Lemma 5.1], such a diagonal preconditioning matrix can
be obtained as follows:

A = Diag(R>1P ) (12)

whereR = (Ri,l′)1≤i≤P,1≤l′≤L with, for every i ∈ {1, . . . , P}
and l′ ∈ {1, . . . , L},

Ri,l′ = Ωi,l′
L∑
l=1

Ωi,l. (13)

Because of the specific form of matrix Ω, the l′-th diagonal
element of A with l′ ∈ {1, . . . , P} is thus equal to g−1 if l′ is
the index of an edge between a TF and a nonTF, and it is equal
to 2(g − 1) otherwise.

3.2. Block coordinate speedup

As our objective function has been decomposed into the sum of
a differentiable function f2 and an additively separable function
f1, an improvement of the convergence speed can be expected
by resorting to a block coordinate approach [13].

Let (p,Q) ∈ N∗ be such that L = pQ, and let (Pk)1≤k≤p
be a partition of {1, . . . , L} in subsets of cardinality Q. The
k-th element of the partition corresponds to a set of indices
defining a block of edge weights x(k)

n ∈ RQ which may be
activated at iteration n of the algorithm, the other L − Q vari-
ables being unchanged. For example, one can choose Pk =
{Q(k − 1) + 1, . . . , kQ}. The benefit of this approach is not
only to reduce the number of variables updated at each itera-
tion, but also to perform the gradient computation only with
respect to the reduced-size vector x(k)

n by making use of the
submatrix Ωk of Ω of dimension P × Q corresponding to the
activated edges. In addition, a more adapted preconditioning
matrix Ak ∈ RQ×Q may be employed, which is computed in a
similar way as in Section 3.1 as a diagonal majorizer of Ω>k Ωk.
The resulting algorithm is summarized below.

Algorithm 1: Block Coordinate Preconditioned
Forward-Backward (BC-P-FB) algorithm

Fix x0 ∈ RN
for n = 0, 1, . . . do

Select the index kn ∈ {1, . . . , p} of a block of
variables
z
(kn)
n = x

(kn)
n − γnA−1

kn
Ω>kn∇Φ(Ωxn − d)

x
(kn)
n+1 = prox

γ−1
n Akn ,f

(kn)
1

(z
(kn)
n )

x
(k)
n+1 = x

(k)
n , k ∈ {1, . . . , p} \ {kn}

Note that last step of the above algorithm involves the com-
putation of the proximity operator prox

γ−1
n Akn ,f

(kn)
1

, which

reduces here to a simple projection onto the convex set [0, 1]Q.
Assuming that the sequence of step-sizes (γn)n∈N is such

that infn∈N γn > 0 and supn∈N γn < 2(µβ)−1, and the block
sweeping strategy follows a quasi-cyclic rule, which means that
every block of variables is called in a finite number of itera-
tions,1 Algorithm 1 is guaranteed to converge to a (global) min-
imizer of Problem (6) [13, Theorem 4.1]. A last thresholding
at 0.5 of the so-obtained minimizer gives us the list of edges
present in the inferred graph.

4. EXPERIMENTAL RESULTS

After a short description of the validation dataset, we detail the
different parameter settings for our method. We compare our
results with two state-of-the-art methods, namely GENIE3 [3]
and CLR [2]. These two approaches are chosen because of their
high accuracy among several datasets, as mentioned in [1].

1More precisely, there exists K ∈ N∗ such that, for every n ∈ N,
{1, . . . , p} ⊂ {kn, . . . , kn+K−1}.
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4.1. Dataset description and parameter setting

The Dialogue for Reverse Engineering Assessments and Meth-
ods (DREAM) [1] fourth multifactorial challenge provides five
simulated datasets with real network topologies from E. coli
and S. cerevisia, and simulated expression data. The networks
are composed of 100 genes, with a total of 100 expression lev-
els per gene. We use the list of TFs available in the dataset for
GENIE3 and Brane relax as well.

We employ as input weights w the normalized Z-scores
computed over mutual information values given by the CLR
method. The components of the vector λ are chosen as
(∀(i, j) ∈ E) λi,j = αi + αj , where αi =λTF if i ∈ T ,
and αi =λnonTF otherwise. These parameters may be inter-
preted as two thresholds: λTF acting on edges linked with at
least one regulatory gene and λnonTF acting on the other edges.
Given the low proportion of TF-TF relationships in the biolog-
ical reality, we chose to promote the other interactions, thus to
impose λnonTF < λTF. Finally, the desired mean degree d of
our model is set to 3 based on biological common knowledge.

4.2. Comparative evaluation

To evaluate the obtained networks, we compare them with the
true network using two measures: the Precision, defined as

TP
TP+FP

and the Recall, defined as TP
TP+FN

, where TP is the
number of true positive, FP is the number of false positive and
FN is the number of false negative. The Precision value indi-
cates the proportion of correctly inferred edges (TP) compared
to the total number of inferred edges (TP + FP). The Recall
value reveals the proportion of correctly inferred edges (TP)
compared to the total number of expected edges given by the
gold standard (TP + FN). Results in terms of Area Under the
Precision-Recall curves (AUPR) are reported in Table 1. This
measure reflects the accuracy of the graph construction using
different strategies in comparison with the ground truth. We
first emphasize the efficiency of our term involving different
λi,j parameter values depending on the gene nature. By turn-
ing off the action of degree prior d (by choosing µ = 0), we
show that this term allows us to outperform the CLR method
by 4.9%. Then, setting µ to 0.005 allows us to reach a 5.9%
improvement over CLR, and to outperform GENIE3 as well.

We evaluate the impact of the choice of function Φ on the
results. The squared `2 norm (Φ(·) = ‖ · ‖2) and the Huber
function have been tested. The latter is defined as: (∀y ∈ R)
φ(y) = y2 if |y| < δ, and 2δ(|y| − 1

2
δ) otherwise, with

δ ∈]0,+∞[. Although the performance of quadratic or Hu-
ber functions appear similar, the latter may benefit from more
robustness to outliers when dealing with real data. Preliminary
results on a large E. Coli compendium [2] yield an AUPR of
0.0639, which constitute relative improvements of 1.3% and
4.6% over GENIE3 and CLR respectively.

4.3. Computation times

Fig. 4.3 illustrates the speed gain using the preconditioning
and block coordinate tricks presented in this paper in compari-
son with the standard Forward-Backward algorithm, and FISTA
[17]. A measure of convergence of our solution is provided
by the variations of ( ‖xn−x̂‖

‖x̂‖ )n∈N, where xn is the labeling
obtained at the n-th iteration, while x̂ is the optimal labeling

Network index 1 2 3 4 5
CLR 0.251 0.255 0.306 0.304 0.310

GENIE3 0.239 0.260 0.323 0.311 0.306
Brane relax1 0.260 0.263 0.324 0.320 0.331
Brane relax2 0.261 0.264 0.327 0.323 0.331
Brane relax3 0.256 0.264 0.332 0.327 0.334

Table 1: AUPR (×10−2) for the different methods. The
Precision-Recall curves are obtained by varying the λnonTF pa-
rameter between 0 and 0.1, in a linearly, equally-spaced way.
For each λnonTF, λTF are chosen to be linearly equally spaced
between λnonTF and 0.9. Brane relax1: µ = 0. Brane relax2:
Φ Huber function (δ = 2.2). Brane relax3: Φ squared `2 norm.

pre-computed over a large number of iterations. To give an
idea about the computation times obtained in practice,2 our al-
gorithm took about 15 seconds to infer a 155-edges network
without any acceleration strategies (FB). The preconditioning
(P-FB) reduces the computation time to 2 seconds and, by com-
bining the block coordinate strategies with block-sizeQ = 209
to the previous one (BC-P-FB), the network is inferred in only
0.25 seconds. In comparison, FISTA took 6 seconds to solve
the same optimization problem. The speedups are important
since the developed GRN inference method aims to be usable
on larger datasets (with g ' 4000 for the E. coli compendium
[2]).

Fig. 2: Comparison of the convergence speed for various al-
gorithms, when Φ = ‖ · ‖2 in the objective function (5).
FB: Forward-Backward, P-FB: Preconditioned FB, BC-P-FB:
Block Coordinate Preconditioned FB.

5. CONCLUSION

In contrast to most existing works on gene network inference
which often ignore the availability of transcription factor lists,
we have proposed a novel optimization approach for building
such networks encompassing a connectivity prior on particular
genes. Our problem reformulation and the thoughtful usage of
recent advances in accelerated strategies allow us to compute an
optimal network according to our model in less than one sec-
ond using pre-computed weights on biological datasets. Our
experiments on the DREAM4 dataset show that Brane relax
compares favorably to state-of-the-art methods. Forthcoming
investigations include the evaluation of the interplay of these
more accurate graph predictions with clustering methods [18].
The recent developments in graph signal processing techniques
[19] are also likely to provide insights in a deeper understand-
ing of gene regulatory dependencies.

2Intel i7-3740QM @ 2.70GHz / 8 Gb RAM, Matlab 2011b.
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