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ABSTRACT

In electroencephalogram (EEG) based biometrics, the determi-
nation of the right channel set helps improve accuracy and usability,
while reducing the required number of electrodes and hence the com-
plexity and cost of the EEG system. In this work we find a reduced
set of channels designed to enhance human authentication accuracy
regardless of changes in the mental task. The study shows that the
resulting eight EEG channels outperform previous state of the art
studies. Also the experiments and quantitative comparison are con-
ducted in a database significantly larger (106 subjects) than the ones
used previously. The suggested set half total error rate (HTER) is
14.69%.

Index Terms— Electroencephalogram, Authentication, Reduced
Channel Set.

1. INTRODUCTION

One of the main challenges of any successful biometric modality
is its immunity against spoofing. This explains the increasing inter-
est in using EEG in biometrics [1]. Recent discussions show how to
spoof face recognition security [2], and also how to spoof fingerprint
security [3]. This implies that two of the main currently used bio-
metrics are vulnerable to spoofing, and many more may be added,
like hand print, iris and speaker recognition. Improving the methods
of recording these modalities may reduce the spoofing threat, such
as adding liveness detection procedures. However the effectiveness
of these procedures is directly related to the cost and the degree of
user inconvenience [4]. Bioelectric signals like EEG may provide a
solution for spoofing by using them solely or use them with other
biometric modalities either as liveness detectors or fused to make
multimodal biometric system.

EEG has shown information related to human identity [5, 6]
and many recent studies show interest in using EEG as a biomet-
ric modality [7–16]. Also recent years have witnessed a revolution
in the technology that measures the EEG, it becomes more usable,
cheap, and does not need lab environment. This may be due to
widely used applications of EEG signals in Brain Computer Inter-
face (BCI) for both entertainment and medical application such as
helping paralyzed people [17].

EEG has many advantages e.g. confidentiality, high immunity
to forgery and promising recognition accuracy among people. How-
ever, it still faces serious problems [18]. Among these problems
are: the high noise content in the EEG signal, large dependency on
mental task, high signal variation between EEG recording sessions
and the cumbersome procedure of the EEG electrodes placement on
the client’s scalp. Reducing the number of used channels will make

the EEG electrodes placement easier. Moreover this will reduce the
EEG number of electrodes and the complexity of the EEG recording
system, which will lead to a smaller size and more affordable EEG
recording system.

EEG is known to be highly affected by the user’s mental task
[19]. This may still be acceptable in an authentication problem,
where the cooperation of the users is assumed for them to be authen-
ticated, but this will highly affect its usability as a biometric modality
in identification problem where the users’ cooperation should not be
assumed. In this work, the suggested EEG channel subset is less af-
fected by the change of mental task, which indicates it may be used
in identification or authentication problems. The full EEG number
of channels ranges from 32 to 64 channels in most of the cases and
to 256 channels if needed.

In this work the signal Power Spectral Density (PSD) was con-
sidered as a feature, as it was noted in [20] that the EEG signal peri-
odogram (which is a method of estimating the PSD) lead to better or
similar performances than more elaborated features such as parame-
ters of autoregressive (AR) models and wavelets.

In order to study channels that are less affected by mental task,
we measured the between mental task distance for the same channel
and person, and measured the between person distances for the same
channel and mental task. The channels that have their between tasks
distance less than the between persons distance are given priority to
be used in authentication problem. Mahalanobis distance was used
for distance measure [21].

2. RELATED WORKS

Many studies examined the accuracy of EEG signals as a bio-
metric modality, some used the full EEG channel set e.g. [12, 22],
and some used a subset of the EEG channels with lack of justifica-
tion e.g. [1, 7–11, 13, 23]. To the best of our knowledge, few studies
justify using a subset of EEG channels in biometric.
Marcel and Millan in [15] used all 32 EEG channels in the prepro-
cessing stage, where they applied spatial filters: spherical splines and
surface Laplacian. These filters increase the spatial resolution of the
EEG and enhance the local signals coming directly from underneath
the measuring electrode, and need to access all the available channel
set to perform the interpolation [24]. In the feature extraction step,
they considered the filtered signals coming from 8 channels, which
are: C3, Cz, C4, CP1, CP2, P3, Pz, and P4. This subset was selected
based on BCI experience that these channels are more appropriate
for mental task classification. But there is no evidence that these
channels are appropriate for person classification. Also the appli-
cation of SS and SL spatial filters in the preprocessing step require
more computation and need to access the total channel set (32 chan-
nels in their case). This indicates that there is no improvement in
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the process of EEG recording and no reduction in the EEG system
cost. Furthermore, the selected channels known to be the best to de-
tect mental tasks. This implies that they are highly affected by the
change of mental tasks. Their suggested feature was the estimated
power spectral density using welch method in the frequency range
8− 30 Hz with frequency resolution of 2 Hz, and they built a Gaus-
sian Mixture Model classifier to measure their accuracy. Figure 1a
shows the selected channel for their feature extraction.

Ravi and Palaniappan in [14] suggested channels subset based
on genetic algorithm (GA). In the preprocessing they used elliptic
band pass filter to get the γ band 30 − 50 Hz. Gamma band energy
only for each channel was considered as a feature. Linear discrim-
inant classification was used to evaluate the fitness function for the
GA algorithm because it is relatively fast. They found no statistical
significance of the difference between using 23 channels and the to-
tal 61 channels with p-value=0.26. Their suggested channels FP1,
F8, AF1, F3, FC6, FC5, FC1, Cz, PO2, PO1, O2, AF7, FT7, FT8,
FC3, TP7, P6, C2, PO7, PO8, POz, P1, and CPz are shown in figure
1b. It is clear that the suggested number of electrodes still large (23)
and more improvement may be reached. Moreover the suggested
channels were found to be not significantly different from the full
channel set, but using the full channel set does not guarantee to give
the best authentication accuracy as it may confuse the classifier. Fur-
thermore, their suggested channel set was tested using one mental
task only, and the effect of different mental tasks was not measured.

Palaniappan and Mandic in [16] ranked the EEG channels based
on their Davis-Bouldin index (DBI) and selected them in the fea-
ture vector gradually. Maximum accuracy was reached after adding
35 channels. The suggested channel set still large and more reduc-
tion may be achieved. Moreover one mental task only is considered,
and the effect of different mental tasks was not measured. Further-
more, it was noted in their results that many channels had reduced
the recognition accuracy despite they had better DBI, and they were
still considered in the final feature set.

3. PROPOSED METHOD

3.1. Dataset

We used the data described in [25], and it was downloaded from
[26]. This data was selected since it contains large number of partic-
ipants. Moreover the dataset contains 6 mental tasks, which makes it
more appropriate to measure EEG channel stability in different men-
tal tasks. The data contains EEG recordings for 109 persons with the
following mental tasks: Task a: Idle (Baseline) with eyes open, Task
b: Idle (Baseline) with eyes closed, Task c: Open and close left or
right fist, Task d: Imagine opening and closing left or right fist, Task
e: Open and close both fists or both feet and Task f: Imagine opening
and closing both fists or both feet. The dataset contains recording of
64 EEG channels. The left earlobe and mastoid electrodes were used
as reference and ground electrodes respectively. The data sampling
rate is 160 samples/s. Three subjects of the 109 were disregarded
because they contains data that were sampled at 128 sample/s. So
in total we used EEG data for 106 subjects. Task a, b, c, d, e and
f samples represent roughly 50%, 4%, 12%, 11%, 12% and 11% of
the total samples number respectively.

3.2. Preprocessing

The channel recording during each mental task was separated from
other tasks based on the recorded annotation. So for each participant

(a) 8 channels suggested by [15] (b) 23 channels suggested by [14]

(c) Our 8 suggested channels

Fig. 1: EEG Channel locations

of the 106, the data for each channel was separated to 6 parts. Then,
the data was segmented to one second segment. This segment length
was chosen because there was no interest in very low frequencies, as
the interest was in frequency range 4− 52 Hz, and we were consid-
ering frequency bins of size 8 as a feature, so no need to have high
resolution spectrum.

Each segment was filtered to frequency range 4 − 52 Hz, as it
found in [1] that combining EEG rhythms (θ (4− 8) Hz, α (8− 15)
Hz and β (15 − 31) Hz) gives optimal result for recognition. Also
some studies use the γ rhythm (30 − 50) Hz as in [22] and claim
very good identification accuracy. So we considered merging θ, α,
β and γ rhythms for better results. No filtration was performed to
reject EEG artifacts and all samples were considered.

3.3. Feature Extraction

The PSD of the frequency range (4−52) Hz was selected as a feature,
with frequency resolution of 8 Hz to reduce the size of the features
and increase the learning speed of the model. So for a single channel,
every segment have 6 features represent the frequency bins (52 −
4)/8. The features were normalized to the sum of all PSD bins in
the same segment. When multiple channels are considered, their
features were combined together.

3.4. Channel Selection Criteria

In this step we considered the data for 50 participant to avoid over
fitting. For the same mental task, channel and person, the EEG fea-
ture vectors were assumed to have Gaussian distribution. In order to
select stable channel subset among the available 64 two values were

998



measured. The first is the average Mahalanobis distance between the
means of the feature vectors distributions of the mental tasks for the
same channel and person. So, the Mahalanobis distance between the
distribution mean of Task a was measured against distribution mean
of Task b, Task c, Task d, Task e and Task f for the same channel and
person. This was repeated for all the other five tasks. This resulted
in 30 distances per channel per person. Averaging these 30 distances
for one person and over the 50 persons resulted in the ”within per-
son distance”, which will be referred to as DWi, where i refers to
channel number. DWi measures how far from each other the feature
vectors distributions collected during different mental tasks within
the same person for some channel i. The second measure was the
Mahalanobis distance between the means of feature vectors distribu-
tions of the same mental task and channel but for different persons.
So, the Mahalanobis distance was measured between the mean of
Task a distribution against the other means for the same task and
channel in different persons. This was repeated for all the other five
tasks. This resulted in 49 distances per task per channel per person.
Then we averaged over the 6 tasks and the 50 persons to find the ”be-
tween persons distance”, which will be referred to as DBi, where i
refers to channel number. DBi measures how far from each other
the EEG feature vectors collected using the same channel during the
same mental task but in different persons.

The channels stability which will be referred to as Si was mea-
sured as the difference between the ”between person distance” DBi

and the ”within person distance” DWi as shown in equation 1

Si = DBi −DWi (1)

After finding the channel stability for all channels, they were
ranked based on their stability value. In order to find the best channel
subset, we run Sequential Forward Selection algorithm on the chan-
nels based on their stability value. Sequential Forward Selection is
a simple greedy search algorithm, and so it does not guarantee to
find the global minimum. The change of person authentication half
total error rate (HTER) for the training set (50 persons) was set as an
objective function. So, the channels that have higher stability were
prioritized to be used in person authentication problem, as they give
better between person separation. But this does not exclude other
channels from being used as they may have different information
that are related to person identity. Any added channel that did not
improve the recognition accuracy by a certain threshold (set to 1%
empirically) was considered non-informative or contains redundant
information that exists in more stable channels, and thus was not
considered in the feature vector. The details of the authentication
experiment is described in section 4.

4. EXPERIMENT DETAILS

The EEG samples for each mental task per channel per person
were collected together and apply feature extraction on each of them.
In total we had 6 × 64 × 106 = 40704 distributions. The mean
and covariance were calculated for each distribution. After that, we
measured the channels stability as described in section 3.4, and all
channels were ranked based on their stability using the EEG data for
50 persons. Table 1 shows the stability value for each used channel.
For the person recognition experiment, we built a person authenti-
cation framework based on Gaussian Mixture Model (GMM) classi-
fier. Among the data of 50 persons, the data during all mental tasks
for the first 30 persons were used to build a Universal Background

Model (UBM) also known as the background model. The number
of used mixtures in the GMM was set to 8 based on the best results
of multiple trials. The remaining data of 20 persons were consid-
ered as clients. All samples from one mental task only (Task a) were
used in training to build the client model, and all the remaining sam-
ples during the other five mental tasks were used in client /imposter
testing. Task a samples represents around 50% of the total samples
for each participant. In running the authentication experiment, we
firstly considered the feature of one channel only, which is ranked
1 in table 1 (channel Iz), and the authentication accuracy was mea-
sured. Then, the second channel was added to the feature vector,
and repeat the experiment to measure the accuracy. We continued
adding channels sequentially according to their rank in table 1. We
noticed that when some channels were added, they did not improve
the accuracy, or in many cases they reduce the accuracy. So, if the
added channel did not enhance the authentication accuracy, it will be
removed from the feature set, as this indicates that this channel fea-
ture is redundant or does not fit well with the used feature vectors of
the more stable channels. This continued until the accuracy of all 64
channels were tested. The best channel set that improve the authen-
tication accuracy was considered as the optimal channel set. In order
to verify this result, we run the authentication experiment using the
optimized channel set considering all the data for all 106 persons.
In this final testing, the data of the first 60 participants were used
to build the UBM model, this includes the data for 50 participants
that were used in verifying the optimal channel set. The remain-
ing 46 participants were used in client /imposter testing. In both
cases, the clients’ data was not included in building the background
model. Moreover the Gaussian mixtures were trained considering
diagonal covariance, and the clients’ mixtures’ means were adapted
using Maximum a Posteriori with the prior UBM model means. The
adaptation was performed as described in [27]. The authentication
was made such that the ratio between the probability density function
(pdf) of a test feature vector measured by the client model and the
pdf of the same feature vector measured by the background model
should be greater than certain threshold. This threshold is changed
according to the required False Acceptance Rate (FAR) and False
Rejection Rate (FRR). Assuming independence for all feature vec-
tors and a uniform class distribution, the likelihood that a certain
feature vector x̄ = x1, x2, x3, ..., xm belongs to a specific class λ
which has n mixtures is measured by probability density function
shown in equation 2.

p(λ|x̄) =

n∑
i=1

kiN(µ̃i, Σ̃i) (2)

where, N : normal distribution with µ̃i multivariate mixture mean
and Σ̃i is multivariate mixture covariance matrix. ki: the probability
of the ith mixture in the GMM model.

Moreover, the work done in [15] and [14] was repeated on the
dataset in hand for quantitative comparison. This includes all their
related preprocessing, features extraction and their selected channel
sets. Also, since our preprocessing and feature extraction methods
are different from those in [15] and [14], and in order to test how
far our selected channels are affected by the preprocessing and fea-
ture extraction methods we chose, we applied the preprocessing and
feature extraction methods described in [15] and in [14] on our sug-
gested channel set, and verify its person authentication accuracy and
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(a) DET curves comparison (b) Using methods in [15].

(c) Using methods in [14].

Fig. 2: Authentication DET curves

compare it again with their work.

5. RESULTS

Table 1 list the channel stability values after applying the chan-
nel stability described in section 3.4. In the table, the channels are
listed in descending order from top-to-bottom and left-to-right.

The best results were noticed to be for channels O2, Iz, TP8,
FT8, F6, AF8, T7 and Cz on the 50 persons training set. A map of the
suggested channels and their location in the selected dataset is shown
in figure 1c. Also to verify the effect of channel order in table 1, we
consider adding the channels in in reversed order, which resulted in
11 channels instead of 8 and HTER value of 14.875% rather than
14.69%, which indicates that the order in table 1 is meaningful.

Figure 2a shows the Detection Error Tradeoff curve (DET curve)
to verify our selected channels accuracy on all the dataset, compared
with the accuracy of channel sets suggested in [15] and [14]. The
HTER values was 14.69%, 17.48% and 14.66% respectively.

In order to measure the effect of the selected preprocessing and
feature extraction on the suggested set, we applied the preprocessing
and feature extraction methods described in [15] on our suggested
channel set, and test its person authentication accuracy and compare
it again with the one described in [15]. Figure 2b shows the DET
curve of this comparison, with HTER value for our suggested set
improved to 12.08%. Also we applied the preprocessing and feature
extraction methods described in [14] on our channel set, and test its
person authentication accuracy and compare it again with the one de-
scribed in [14]. Figure 2c shows the DET curve of this comparison,
with HTER value for our suggested set becomes 15.03%.

Table 1: Stability Result for 64 EEG Channels

Channel
ID Si ID Si ID Si ID Si

O2 4.034 T8 3.2872 FPz 2.9676 AF3 2.870
Iz 4.017 AF8 3.253 C2 2.965 CPz 2.868
TP8 3.987 AF4 3.238 P2 2.959 P7 2.862
O1 3.859 P8 3.236 FC3 2.953 CP5 2.861
Oz 3.858 P4 3.179 AF7 2.943 P1 2.858
FT8 3.807 CP4 3.178 F5 2.932 FC1 2.848
C6 3.672 P6 3.171 CP3 2.927 C1 2.837
F6 3.589 FP2 3.142 Pz 2.908 P5 2.812
T10 3.484 FC2 3.122 P3 2.895 CP1 2.811
C4 3.469 C3 3.095 FT7 2.888 Fz 2.787
FC6 3.443 FP1 3.086 F7 2.887 PO3 2.786
CP6 3.366 PO4 3.066 F2 2.886 AFz 2.775
FC4 3.338 CP2 3.033 POz 2.885 PO7 2.773
PO8 3.309 C5 3.024 FCz 2.884 F3 2.663
F8 3.300 F4 3.006 Cz 2.875 F1 2.643
FC5 3.290 T7 2.984 TP7 2.873 T9 2.557

6. CONCLUSION

In this work we suggested 8 EEG channels to be used in biomet-
rics as an alternative to using the complete EEG channel set. The
suggested set was justified based on its stability in different men-
tal tasks. Channels with high stability values were given priority to
contribute in the feature vector if they reduce the HTER. The sug-
gested set was examined by a challenging experiment where the fea-
ture vectors during one mental task only were used for training, and
the remaining feature vectors from other mental tasks were used for
testing. These results were compared with other EEG channel sets
suggested by [15] and [14]. Our suggested set has a smaller HTER
and a better DET curve than the one suggested in [15], despite that
the preprocessing used in [15] needs to access the total channel set.
Also comparing our result with the work in [14], their suggested set
achieved a smaller HTER, but the DET curve behavior shows that in
cases where low false rejection rate (FRR) is required, our suggested
set has better results, even though [14] used 23 channels and we used
8.

The accuracy of our suggested set may be enhanced further by
using different preprocessing and feature extraction. As can be seen,
when we applied the preprocessing and feature extraction in [15] to
our suggested set, an improvement of the HTER of around 2.61%
was achieved. Our suggested channel set needs to be tested fur-
ther on different datasets that have different mental tasks, since the
dataset used has six mental tasks, four of them related to imagery
or actual movement which are related to motor cortex, and the other
two idle tasks with eyes open and eyes closed. Also, in the dataset
used, the EEG recording considered the left earlobe and mastoid
electrodes as reference and ground respectively. Selecting a differ-
ent reference electrode may lead to a different result, and this will
be tackled in a future work. The Sequential Forward Selection algo-
rithm does not guarantee to find the global minimum. Using other
exhaustive methods like dynamic programming may lead to better
results.
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