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ABSTRACT 

 

Controlling the surrounding world by just the power of our 

thoughts has always seemed to be just a fictional dream. 

With recent advancements in technology and research, this 

dream has become a reality for some through the use of a 

Brain Computer/Machine Interface (BCI/BMI). One of the 

most important goals of BCI is to enable handicap people to 

control artificial limbs. Some research proposed wireless 

implants that do not require chronic wound in the skull. 

However, the communications consume a high bandwidth 

and power that exceeds the allowed limits, 8-10mW. This 

study proposes and implements a modified version of real-

time spike sorting for wireless BCI [4] that simplifies and 

uses less computation via an adaptive neural-structure; 

which makes it simpler, faster and power and area efficient. 

The system was implemented, and simulated using 

Modalism and Cadence, with ideal case and worst case 

accuracy of 100% and 91.7%, respectively. Also, the chip 

layout of 0.704mm2, with power consumption of 4.7mW 

and was synthesized on 45nm technology using Synopsys. 

 

Index Terms— BCI/BMI, VLSI, layout, Adaptive, 

Spike Sorting 

 

1. INTRODUCTION 

 

BCI/BMI is a system that provides communication between 

a living brain and a machine through translating neural 

electro-activity into computer commands. One of the most 

important goals of BCI research is to enable handicap 

people to control artificial limbs. The most common BCI 

sensors come mainly in two types: a wearable cap of sensor 

(e.g. 10-20 ISO), or an implant through an open wound. 

Both of these methods are non-practical for normal human 

daily use, or increase the infection hazard, respectively. 

Wireless implants [1] do not require chronic wounds in 

the subject’s skull. However, the transmission of the every 

single recorded neuron activity signal will consume a high 

bandwidth. In addition, the increased power consumption 

conflicts with the 8-10mW power limitations of the implant 

[2-3][7]. Thus, by adding the spike sorting circuit inside the 

implant directly after EEG signal acquisition will 

dramatically reduce the amount of data and the required 

bandwidth towards a more implementable BCI implant. In 

[4], a real-time spike sorting VLSI architecture for wireless 

implants was proposed to reduce complexity, bandwidth, 

and power consumption (see Figure 1).  

 

 

 
 

 

 

 

 

 

 

 

 

Figure.1 The block diagram of the proposed Wireless BCI Sensor (spike 

sorting module: Neural Fingerprinting). 

In this study, the authors modified, simplified the 

complexity, and added an adaptive matching behavior to 

neural-based real-time spike sorting architecture. 

Additionally, the circuit design, via Circuit Schematics and a 

Verilog code, was used for the simulation using ModelSim. 

Finally, the chip layout was synthesized on 45 nm 

technology using Synopsys®.  The chip has an area of 

0.704mm2, and consumes 4.7mW of power from a 1.1V 

voltage source. 

 

2. BACKGROUND 

 

2.1. Wireless BCI implants 

 

Several wireless implants were proposed as a solution to the 

sensor placement, wiring, and usability issues [1]. It 

provides an acceptable SNR (~ 8.4 dB), and does not need 

an open wound to communicate with the controlled machine 

or device. It is based on high density microelectrode arrays 

of size 1cm2 that can record a group of 500 single neurons 

activity on the cortex of the brain, but it still needs a high 

bandwidth of RF to communicate with the controlled 

machine. 

 

2.2. Power Consumption and Bandwidth limits 

 

The bandwidth in the wireless communication plays a very 

important role due to the power and area of the implant. The 

977978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



input consists of a high amount of neural data coming from 

the microelectrode array. Research in [5] showed that 100-

electrode arrays sampled at 25 kHz per channel yield to 30 

Mbps data rate. Such a bandwidth is huge for the basic 

wireless circuit that is needed to be fit into the implant. 

Therefore, this is one of the main limitations for wireless 

BCI implants from being used in the prosthetic limb 

applications. 

 

2.4. Motivation and Approach 

 

In this study, the main goal is to design neural spike sorting 

chip for a wireless BCI implant with an adaptive behavior 

that can be placed over the microelectrode array inside the 

patient’s skull without using the regular EEG spike shape 

based sorting, clustering and feature extraction steps that 

requires a lot of calculations and can provide unsupervised, 

real-time neural spike sorting. The main challenge is to 

make the chip have: 

 a low bandwidth (by adding a neuron classifier after the   

EEG signal acquisition and before the wireless 

transmission) 

 a small area( by simplifying the large arithmetic units 

and reducing the chip layout routing) 

 low power (through replacing the long instruction with 

parallel operation circuit of the control unit). 

The next sections will briefly explain the related works 

followed by the proposed system architecture design. Then, 

the implementation, the simulation, and the results will be 

discussed, and, finally, the conclusions. 

 

3. RELATED WORK 

 

A VLSI friendly architecture [4] was proposed consisting of 

five units: EEG Sensors and input amplifiers, analog to 

digital converts (ADC), Digital Wavelet Transform (DWT), 

Neural Fingerprint and the output RF Module. The Neural 

Fingerprint Unit consists of: (1) squaring unit, (2) division 

unit, (3) comparator unit, and (4) a Memory. 

This architecture reduces the signal transmission 

bandwidth by reducing the amount of data that needs to be 

transmitted, and, as a result, reducing the power 

consumption. The study in [5] describes the main 

implementation issues. Because the chip will be implanted in 

a living subject body, (1) the circuit area should be relatively 

small (~ 1cm2), (2) the energy dissipation should be low to 

not increase the temperature of the tissue (≤ 1 C°), and (3) 

the power consumption must be kept low (8~10mW). 

The first successful system-on-chip (SoC) implantation 

was presented in [8] based on an ultra-wideband (UWB) 

environment which uses FIR filters and a tri-core CORDIC 

processor over a 64-channel microelectrode array. However, 

in this paper, we consider a spike sorting chip that is 

independent of the pre-conditioning filter systems. 

To our knowledge, the only related VLSI Implementation 

for a BCI neural unsupervised spike sorting chip was 

proposed in [9], and represented a multi-channel, online, 

unsupervised clustering spike-sorting DSP. A brilliant idea 

of adding spike ID instead of the value was also introduced, 

and the chip design was based on a two-stage 

implementation of an online clustering algorithm, a noise-

tolerant distance metric, and a selectively clocked, high-V 

register bank, Figure.2. 

 

 

 

 

 

 

 

 

 

 

 
Figure.2 The two stages online neural spike sorting multi-channel cluster 

mapping algorithm with parallel channel identification block diagram. 

This system uses 16 input channels implemented in a 65nm 

technology, and has a power dissipation of 75μW at a supply 

voltage of 270mV. 

However, to reduce the system complexity and increase 

the processing speed of the chip to make it more feasible for 

implants, in this paper, we use a different approach to the 

reduce the arithmetical operations that are required by the 

mathematical model by using Neural network structure 

model approach with adaptive machine learning method. 

This method is based on considering the overall snapshot of 

the neural active area (the major firing spike recorded on a 

specific channel and the affected surrounding channels) 

instead of calculating each and every single neural spike. 

 

4. NEURAL FINGERPRINT 

 

The main idea of the neural fingerprint [4] is to capture 

the signature of each neural spike, and benefit from the 

neural echo effect captured via the adjacent channels. Thus, 

the system does not only consider a single neural spike 

activity on its major channel, but also its echo across all 

other affected surrounding channels.  

Thus, given a time event t(i), n neurons, ch(i,1) is 

channel i neuron 1, and m channels, we search for the 

maximum of all coefficients over all the channels, where the 

maximum of channel i is defined as p(i). We define the pivot 

to be the maximum of all p(i)’s as follows: 

p(i) = max {Ch(i,1),…,Ch(i,1)}                   (1)       

P = max {p(1),…,p(m)}                         (2) 

A fingerprint is constructed for each neuron j which have the 

highest firing value at Ch(j,m) in the  form of a pair of 

vectors: channel fingerprint Chn.Fpt vector and nodal 

fingerprint Nod.Fpt  vector as follows: 
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Chn.Fpt = ( p(1)/P …  p(m)/P )                      (3) 

Nod.Fpt = ( Ch(j,1)/P … Ch(j,m)/P )                  (4)                                                     

After the first fingerprint is calculated, it will be stored in a 

fingerprint lookup table (signature table) with an associated 

neural ID. Then, for each new EEG we calculate the 

corresponding neural fingerprint and search for a match. If a 

match is found, the system will mark the identified neuron as 

“detected” and sent its ID to the output; otherwise, the new 

fingerprint will be considered as a new neuron, and will be 

appended to the signature table with a new neural ID. 

 

5. THE PROPOSED DESIGN 

 

The proposed design consists of four main units: (1) Pivot 

Finder, (2) channel’s and neutral’s Fingerprint Generator, 

(3) Adaptive Matching Unit (AMU), and (4) a SRAM for 

the Neural Signature Table (NST) in addition to the global 

system controller. The block diagram is shown in Fingure.3.  

 

Similar to [4], Figure.1, the inputs to the Neural Fingerprint 

Unit are coming from the Discrete Wavelet Transform 

(DWT) from a standard AMI 3Metal 2Poly 0.5μm CMOS 

technology with 4 channels EEG, where each DWT 

coefficients is represented in 10-bits [6] [10] independent of 

the Analog front-end or signal pre-conditioning phase or 

filter that could be added. This also helps the system 

scalability due to the modular design. 

Unlike the previously proposed systems, our design 

reduces the complexity of the system by: 

 replacing the squaring of the signed values with a two’s 

complement unit which requires only one clock cycle, 

 eliminating the divider (the most complex arithmetic 

unit) by just saving the divisor and the dividend values, 

 using a fixed, two point calculation which still produces 

the required degree of accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.3 The spike neural identification system architecture and block 

diagram 

Additionally, an adaptive neuron matching unit was added to 

the system to increase the correctness of the neuron 

matching procedure within a higher SNR environment 

regarding Type I and Type II errors. The algorithm checks 

each newly generated fingerprint, and tries to matches it with 

a corresponding entry of all the NST. It will be discussed in 

the next subsections. The rest of this section explains the 

process steps and the associated implementation 

enhancements of the system. 

 

5.1. Pivot Finding Unit 

 

The Pivot Finding unit is the first step of the process. Thus, 

in order to increase the system speed and reduce the area, 

the comparator unit was replaced by a bitwise parallel 

comparison circuit for each of the four inputs. The bitwise 

parallel comparison circuit executes the Pivot Finding of the 

channel in O(1), as shown in Figure.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure.4 The Pivot Finding: a) max find unit, and b) parallel comparator 

basic building block. 

 

5.2. Adaptive Matching Unit 

 

Unlike other studies [11], here we drop the assumption of 

the Gaussian distribution of the neurons, which makes it 

closer to the real situation, but we still assume that each 

neuron has a unique firing action potential pattern, which is 

a generally agreed upon assumption. However, the neurons 

do not fire the exact waveform at every simulation event, as 

during the neural reading there are sometimes several small 

variations for the same group of neurons. It differs based on 

a number of factors: EEG noise, BCI artifacts, relaxation 

level on the human subject, environmental condition, and 

time when the signal was captured but still has a shared 

entropy. This means that the exact matching of the EEG 

values would result in large amounts of Type I errors. 

Thus, an AMU addition was proposed to solve the 

neural match verities problem. The AMU is based on a 

parameterized Mean Square Error method, where we allow a 

Fuzzy Logic style matching behavior. Let us define x(i) to be 

a single field in the neuron fingerprint table stored in the 
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SRAM, and y(i) to be a neuron fingerprint value that needs 

to be matched. We define α(p) as the matching sensitivity 

for the pivot P of the fingerprint record, which is based on 

the principle of locality, such that: 

x(i) = y(i)  ± α(P)                                  (5) 

Note that the equation is linear to keep the simplicity of 

the hardware implementation, and the value of α(P) was 

calculated  by trial and error through a supervised learning 

phase during the simulation where an initial lookup table 

was constructed for the values of α(P), Also, a feedback 

connection provides the adaptive algorithm with a reward 

for every correctly matched neuron by increasing the weight 

of the α(P) for that specific neuron. 

 

5.3. The Neural Signature Table 

 

The neural signature table stores the neural fingerprints and 

the associated neural IDs. It is designed as a chip memory 

with width of (n+1)*m and depth of n*α(max), where n is 

the number of individual neurons, m is the number of 

channels, and α is the sensitivity. In our design, 30Kb of 

memory was allocated for 500 different neurons per a 

microelectrode array [1]. The memory word structure is 

shown in Figure.5. 

 

 
Figure.5 The SRAM field of memory word 

However, these enhancements cost an increase in the SRAM 

size  by 180% comparing to [4], and reduce both the clock 

cycle by 5x times and the required area of the arithmetic 

units by orders of magnitude. Therefore, makes this design 

still meets the total area limitations. 

 

6. SIMULATION AND RESULTS 

 

The Neural Fingerprint System was implemented in Verilog, 

and simulated using ModelSim software. The used sets of 

input data from the DWT unit and the SNR of the output is 

computed based on the technique described  in [12] and 

used in [4] with real sample EEG data.  

Seven different data sets were used with noise levels of: 

ideal case, and (4, 5, 6, 7, 10, 15) dB. The first set was used 

to get the a(P) : P initial lookup table only during the design 

phase. The rest of sets were used for testing. The results 

show that, in the ideal case, the system perform at 100% 

accuracy, and with the noisy sets, the system gets a worst 

case accuracy of 91.7% which is still acceptable with the 

BCI performance limits (>90%). 

The results were compared to previous work. We used the 

pair of (False Positive Rates (FPR), True Positive Rates 

(TPR)) [4] based on the Euclidean Distance, and we 

compared it with the ideal case (0, 1).  

We calculated the range of the operation between the best 

and worst performance for our work as: Best False Positive 

(BFP), Worst False Positive (WFP), Best True Positive 

(BTP) and Worst True Positive (WFP).  The best and worst 

performance for our work is: Best Proposed False Positive 

(BPFP), Worst Proposed False Positive (WPFP), as Best 

Proposed True Positive (BPTP) and Worst Proposed True 

Positive (WPFP). The result is shown in Figure.6. 

 

 

 

 

 

 

 

 

 

 

 
Figure.6 Sample Neural Fingerprint Spike Sorting simulation 

From the previous graph, we can see that the proposed 

design not only fits the overall performance region using less 

calculations but also has a noticeably (the solid lines) better 

performance in the best case for both FPR and TPR. Also, it 

has an almost equal performance for the worst case due to 

the adaptive behavior. 

 

 

 

 

 

 

 
 

 

Figure.7 Neural Fingerprint Spike Sorting Chip Layout 

The layout of the system was generated in 45 nm technology 

using Synopsys®, which occupies area of 0.704 mm2 with 

1109 cells, by consuming 4.7346mW of power from a 1.1 V 

source. The chip layout is shown in Figure.7 to demonstrate 

the relative area between the main building blocks. 

 

7. CONCLUSION 

 

We modified, reduced the complexity, and implemented an 

adaptive real-time BCI Neural Spike Sorting chip layout that 

meets the power, size, bandwidth, and accuracy constraints 

of the BCI wireless implants. The speed and power 

optimization come against the size, but still in the acceptable 

region. The adaptive system behavior increases the system 

accuracy with simplified design than the previous systems. 

However, by reducing the memory size and technology will 

help the realization of the wireless BCI implants for artificial 

limb control. 
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