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ABSTRACT

We present a novel QRS complex detection scheme from
ECG with motion artifact. The algorithm relies on subspace
learning and template matching. QRS complex detection
during exercise is a challenging problem because multiple
artifacts affect the ECG measurement. Motion artifact is con-
sidered to be the main disturbance added to the measurement
during exercise. To deal with the problem, we train a dic-
tionary to represent motion artifact using information from
a tri-axis accelerometer, and then remove the artifact contri-
bution from noisy ECG measurements. We select the GCC-
PHAT filter for efficient QRS detection on the denoised ECG
measurements. We show that the proposed algorithm has
appreciably higher motion artifact reduction capability and
lower computational complexity than competing algorithms.
It is therefore a preferred alternative for implementation in
mobile health monitoring systems.

Index Terms— ECG, QRS complex, motion artifact, dic-
tionary learning, GCC-PHAT

1. INTRODUCTION

Wearable bio-sensing is gaining importance in daily life due
to the increased interest in personal health care and the wide
spread of smart mobile devices. The application of such de-
vices is broad ranging from drug delivery to setting up a fit-
ness plan. Amongst many of bio-signals, electrocardiogram
(ECG) delivers vital information because of its direct connec-
tion to cardiac activities. ECG signal is represented by five
distinct (P-Q-R-S-T) complexes, and each individual com-
plex provides information on part of the heart activity. The
QRS complex has the most distinct shape of the whole inter-
val of ECG, and the waveform makes ECG monitoring con-
venient and accurate. Successful detection of QRS complexes
enables accurate bio-identification [1], heart rate (HR) com-
putation [2], and arrhythmia detection [3]. However, during
exercise, multiple sources of additive artifacts affect the ECG
measurement and they make the cardiac monitoring difficult
in practice. Motion artifacts are considered to be the main ob-
struction, and they are generated by skin deformation which
changes the electrical property of interface between skin and

electrodes [4, 5]. Because of that, accurate recording of ECG
during exercise is difficult since motion causes severe base-
line wander. To avoid such artifacts, mechanically and elec-
trically stable measurement is necessary, but it limits the sub-
ject’s mobility.

The previous study shows that motion artifacts can pos-
sibly be removed by use of accelerometry. The accelerome-
ter based artifact reduction is extensively studied in EEG and
other bio-signal measurements. The method estimates mo-
tion artifact indirectly using the information from accelerom-
eter, and removes the estimated artifact using adaptive filters,
such as LMS and RLS filters [6]. However, this approach re-
quires a measurement system with strict synchronization be-
tween ECG and accelerometer measurements to obtain proper
cancellation results. In addition, the method uses adaptive fil-
tering with no access to the true ECG signal, and leads to fil-
tering out ECG information as well. Wavelet and dictionary
learning techniques are studied to reconstruct clean ECGs us-
ing prior information [7]. Yet, these approaches can not pro-
duce proper denoising performance if the measurements are
highly contaminated by motion artifacts that are correlated
with the trained data. Recently, a direct cancellation method
by monitoring the impedance change between skin and elec-
trode is reported [8]. However, the method requires a spe-
cially designed circuit [9] for injection of known high fre-
quency signal, to avoid interference with ECG signals, and
results in high sampling rate which is not desirable in wear-
able devices.

We propose, in this paper, a novel QRS detection scheme
for wearable bio-sensing devices during exercise. The pro-
posed approach consists of dictionary learning based artifact
reduction and template based QRS detection methods. The
proposed approach can be configured by combining off-the-
shelf electronics; dry electrodes, amplifier, and an accelerom-
eter. The low hardware cost for implementation is an advan-
tage of the proposed system.

This paper is organized as follows: Section 2 introduces
our motivation, the proposed artifact reduction, and QRS de-
tection methods. In Section 3 we present the experiment re-
sults of the proposed scheme. We suggest expected applica-
tions of the proposed approach in Section 4.
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2. PROPOSED METHOD

2.1. Motivation

Detecting ECG signal using portable dry-electrode is a chal-
lenging problem because the measurement is highly subject
to motion artifact. Despite the variability of ECG appearance,
the QRS complex is less vulnerable to the change in heart
rates and motion artifact due to its high peak-to-peak wave-
form in the appearance.
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Fig. 1. ECG waveform and QRS complex (a), and ECG wave-
forms before (dashed line) and after exercise (solid line) (b).

Fig.1 (a) illustrates the portion of QRS complex from one
cycle of ECG, and Fig.1 (b) shows the persistent shape of
QRS complex at both low (88 bpm) and high (155 bpm) heart
rates, dashed and solid lines respectively. Leveraging the fact,
a QRS template can provide a robust signature to heart rate
changes and additive artifacts.

2.2. Problem formulation

Taking ECG measurements during time T , which is enough
to include at least one QRS complex, then we can express the
measurement signal x(t) during t ∈ (0, T ) as

x(t) = γs(t− τ) +m(t) + v(t), (1)

where s(t−τ) is a QRS complex centered at time τ with gain
γ, motion artifact m(t), and v(t) is the measurement noise.
In this model, we are given x(t), and extract s(t) before ex-
ercise; but m(t), τ , and γ are unknown information to be es-
timated for accurate QRS detection. We will explain our ap-
proach about how to find these unknown information through
the rest of this paper.

2.3. Motion artifact cancellation

We highlight the dictionary training scheme which learns sub-
spaces to represent motion artifacts rather than ECG wave-
forms different from the conventional approaches. After sub-
space leaning, the artifact contribution is removed from the
corrupted ECG measurements by sparse coding. Clearly, this
is the opposite approach to the previous studies, but more
efficient in cleaning motion artifacts. The acceleration sig-
nals during exercise are much sparser than ECG signals be-
cause they are highly localized in the frequency domain (be-
low 10Hz in general). In contrast, ECG signals are widely
spread (below 120Hz) regardless of the heart rate. Via the
proposed dictionary learning scheme, the propagation delay
between ECG and motion artifact will be compensated due
to translation and modulation duality between the time and
frequency domain.

Assuming the motion artifact on the ECG measurements
are spanned by the same subspaces of the acceleration sig-
nals, the artifact signals can be removed by subtracting the
artifact contribution from the corrupted ECG measurements
using the learned subspaces. Stationary or quasi-stationary
signal can be effectively reconstructed using subspace learn-
ing method such as K-SVD [10] and its variants. Because
the K-SVD performs singular value decomposition (SVD), it
requires O(N3) complexity for each computation, and thus
it is expensive to apply for wearable devices. As an alterna-
tive, iterative subspace identification (ISI) provides compar-
ative performance as that of K-SVD but requires one eighth
of computation time [11]. The ISI harvests the union of sub-
spaces which is expressed by linear combination of observa-
tions, and the subspaces of input signals are learned recur-
sively from the training set until the set is empty. Readers
may refer [11] for more details about the ISI algorithm.

We choose the acceleration signal of gravitational direc-
tion g ∈ {x, y, z} which shows the biggest cross-correlation
with the measured ECG signals [6]. A sampled N acceler-
ation signal vector ~ag can be expressed with a matrix-vector
product as

~ag = Φ~α+ ε (2)

where Φ is anN×K overcomplete matrix withK � N , ~α is
an K × 1 vector, and ε is the approximation error. The sparse
representation problem can be expressed as

minimize ||~α||0, s.t ||~ag − Φ~α||2 ≤ ε (3)

where || · ||0 denotes the number of nonzero entries in α. The
coefficient vector ~α is sparse since the acceleration signals are
quasi-periodic and thus highly localized in the frequency do-
main during exercise. The ISI process provides the minimum
subsets of subspaces to represent the signal vector of ~ag:

~ag = Φs~αs + ε. (4)

Now, with the trained dictionary Φs, one can find the coeffi-
cient ~βs to represent the artifact contribution to the measured
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ECGs by solving a least square problem:

minimize
~βs

||~ag − Φs~βs||2. (5)

Thus, the motion artifact can be estimated as m̂ = Φs~βs,
and we obtain denoised ECGs by computing the residual:
x̂ = ~x − m̂ = ~x − Φs~βs. In Fig.2, the first slot illustrates

Fig. 2. Denosing results of corrupted ECG signal (1st slot)
using adaptive filters (LMS: 2nd and RLS: 3rd slots), and sub-
space based method (4th slot).

ECG signal corrupted by motion artifact. The second and
third slots are the artifact cancellation results using LMS and
RLS filters respectively. The fourth slot represents denoising
results by the proposed subspace based method. We compare
the artifact reduction capability of the ISI based method with
adaptive filtering methods. For comparison, we compute the
artifact power reduction using the adaptive filtering and the
proposed methods in dB scale as 10 log10(||x̂||2/||~x||2) after
artifact cancellation, and the results are presented in Table1.
In the table, the numbers inside parentheses indicates heart
rate in bit-per-minute (bpm). Clearly, the ISI based approach

Table 1. Power reduction after removing motion artifacts
Methods Walk (94-120) Jog (102-139) Run (121-163)

LMS -4.7 -0.9 -0.5
RLS -3.6 2.3 -0.3
ISI -6.6 -6.1 -6.8

shows the highest reduction of motion artifact. However, dic-
tionary learning is costly in computation. Thus, as compen-
sation of the rigorous processing, we design a fast running
algorithm to detect QRS complexes which is introduced in
following subsections.

2.4. QRS complex detection

The QRS template can be computed from ECG measure-
ments with minimum or without motion artifacts by averag-
ing a few cycles of ECGs. The presence of motion artifacts
can be checked by investigating signal power of the ac-
celerometer: Pacc = 1

N

∑N
n=1

√
ax(n)2 + ay(n)2 + az(n)2.

If Pacc < ηmotion, then the N ECG measurements are re-
garded as artifact free, where the threshold value ηmotion is to
be determined in an empirical way. Now, the QRS template is
generated by searching the peak(R) and minimum points (Q
and S) nearby the the peak location. We illustrate an example
in Fig.3. With the QRS template, we formulate the detection

Fig. 3. The QRS complex template (solid line) and binary
window (dotted line). The binary window (BWIN) will be
used to extract QRS complex from ECGs

problem to the TDOA (time-difference of arrival) problem
in speech signal processing. Amongst many TDOA algo-
rithms using multiple channels, the cross-correlation methods
is selected to find the time-difference because of its imple-
mentation simplicity and low complexity. The generalized
cross-correlation with phase transform (GCC-PHAT) was
introduced in [12], and widely used for robust detection of
speech signals [13,14]. Now, the detection problem in (1) can
be expressed as

xt(n) = s(n), x(n) = γs(n− τ) + v(n), (6)

where xt(n) is the QRS template, and x(n) is the denoised
ECG measurements which are sampled during exercise.
Computing the cross-correlation of these two vectors in the
frequency domain requires O(N) multiplications comparing
the time domain complexity O(N2):

Gxtx(ω) = Xt(ω) ·X∗(ω) (7)

where Xt(ω) and X(ω) are the Fourier transform of ~xt and
~x respectively, and X(ω)∗ denotes complex conjugate of
X(ω). Using the inverse Fourier transform operator F−1

with weight-function ψ(ω),

~rxtx = F−1
{
ψ(ω)Ĝxtx(ω)

}
, (8)

the time domain cross-correlation is obtained. Selecting
the weight-function ψ(ω), we choose the phase transform
(PHAT) which is defined as

ψ(ω) =
1

|Xt(ω) ·X∗(ω)|
, (9)
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which normalizes each frequency bin of cross-correlation to
generate a sharp peak in the time domain. Thus, the GCC-
PHAT output can be rxtx(n) = δ(n − τ). Investigating
the maximum point over ~rxtx as τ̂ = arg maxτ rxtx(n). The
GCC-PHAT filtering can be summarized as below

τ̂ = arg maximize
τ

F−1

{
Xt(ω) ·X∗(ω)

|Xt(ω) ·X∗(ω)|

}
, (10)

where τ̂ indicates the location where the QRS template s(n)
is placed on the ECG measurement x(n). With the loca-
tion estimate, the delayed version of QRS template x̂ is
generated by shift operation to find the signal gain γ in
(1) which can be found by solving minimization problem:
minimizeγ ||~x− γx̂||22. By defining expectation of the error
function E[~e] = E[||~x− γx̂||22], we can solve the minimization
problem by partial derivatives: ∂

∂γ~e = 0 which is equivalent

to 2γx̂T x̂ − 2~xT x̂ = 0, and we compute γ̂ = ~xT x̂
x̂T x̂

. Now, we
find all the unknown parameter of (1), so that QRS detection
is possible from the corrupted ECG measurement.

Fig. 4. Detection results during jogging (HR = 110 bpm).

3. EXPERIMENTS

For experiment, we select OP Innovations’ TrueSense Explo-
ration Kit [15] which includes all the required components
for the proposed system. The sensor kit is equipped with
dry-electrode pairs (512Hz sampling), a tri-axis accelerom-
eter (8-32Hz sampling per channel), a memory module for
storage, and ZigBee communication capability. We place the
sensor assembly on the location between V1 and V2 of the
subject’s chest using a chest strap. For seamless detection,
signal framing and windowing techniques are used with 50%
overlap with the neighboring frames. ECG measurements are
processed by N = 128 (250ms), and we first remove motion
artifact using the methods in Subsection 2.3. Fig.4 and 5 il-
lustrate the QRS detection snapshots. The first slots of the
figures show ECGs with motion artifacts (bold-gray lines)
and the result of artifact cancellation (thin-solid lines). The

Fig. 5. Challenging case during running (HR = 129 bpm).

second slots present the QRS detection results after GCC-
PHAT filtering and QRS complex thresholding. The thresh-
olding is performed considered two factors: the QRS gain γ
and distortion. We define the QRS distortion as ζ(ŝ, γ~s) =
||ŝ−γ~s||2/||γ~s||2, where ŝ is the detected QRS complex, and
~s is the QRS template. If γ > 0.5 and ζ(ŝ, γ~s) < 0.5, then we
take ŝ and vice versa. The second slot of Fig.5 shows a false
detection (A) and a miss (B). The correction of the false and
miss detections is possible by tracking back the location on
the ECGs using heart rate information. The third slots over-
lap the detected QRS complexes. We note here the number of
dictionary clusters found by the ISI which are used to remove
the motion artifacts: 26-28 for walking, 10-12 for jogging,
and 8-9 clusters for running.

4. DISCUSSION AND CONCLUSION

The proposed QRS detection method consists of artifact re-
duction using dictionary learning and QRS complex detection
using GCC-PHAT filtering. The dictionary based artifact can-
cellation shows high efficiency in which comes from the ro-
bust representation of the artifact influence on the ECG mea-
surements. We propose the GCC-PHAT filter to detect QRS
complexes by formulating a TDOA estimation problem as in
source localization. Both the methods require low computa-
tional complexities comparing to similar family of algorithms
which is suitable for portable systems. Motion and gait recog-
nition can be realized using the trained acceleration dictionary
with a clustering method. The dynamic effect of exercise to
heart rate changes can investigated by adding the recognition.
By augmenting arrhythmia case to the QRS templates, de-
tection of normal and abnormal QRS complexes are possible
using the same approaches presented in Section 2. Due to the
limit of space, we focus on introducing the new approaches,
and the result of quantitative research will appear on future
publications.
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