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ABSTRACT

Photoplethysmography (PPG) signals, captured using smart
phones are generally noisy in nature. Although they have
been successfully used to determine heart rate from fre-
quency domain analysis, further indirect markers like blood
pressure (BP) require time domain analysis for which the
signal needs to be substantially cleaned. In this paper we pro-
pose a methodology to clean such noisy PPG signals. Apart
from filtering, the proposed approach reduces the baseline
drift of PPG signal to near zero. Furthermore it models each
cycle of PPG signal as a sum of 2 Gaussian functions which
is a novel contribution of the method. We show that, the noise
cleaning effect produces better accuracy and consistency in
estimating BP, compared to the state of the art method that
uses the 2-element Windkessel model on features derived
from raw PPG signal, captured from an Android phone.

Index Terms— Photoplethysmography, Blood Pressure,
Noise Cleaning, Gaussian Function

1. INTRODUCTION

Smart phone applications for physiological sensing are rapidly
gaining popularity in both developed and developing nations.
Such applications provide both elderly people and young
adults with an opportunity to monitor several physiologi-
cal vitals regularly at home for indicative and preventive
measurements without possessing dedicated clinical devices.
Modern smart phones are equipped with a number of inbuilt
sensors, including the accelerometer, microphone and camera
[1]. Both accelerometer and microphone can be used to mea-
sure breathing rate and heart rate, whereas the camera can be
used to estimate several vitals using photoplethysmography
(PPG) technique.

PPG is a simple non-invasive technique to measure the instan-
taneous blood flow in capillaries [2]. Capillary blood flow
increases during systole and reduces during diastole. Thus,
PPG signal of a person is periodic in nature, whose funda-
mental frequency indicates the heart rate. Researchers have
shown that PPG can be a useful technique to measure several
physiological vitals including the heart rate (HR) [2], blood
pressure (BP), respiratory rate [3], blood oxygen saturation
(Sp0O2) [4] and certain ECG parameters [5]. There is a wide
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literature available in prior arts, that estimates systolic (Ps)
and diastolic (P;) BP from PPG. Few of them used a com-
bination of PPG and ECG signals for measuring the pulse
transit time to estimate BP [6]. PPG signal, synchronized
with a microphone [7] can also be used to serve this purpose.
Research is also going on to estimate BP, using PPG as the
only input source for creating more affordable systems. Teng
et al. [8] and Lamonanca et al. [9] proposed a set of time
domain PPG features to estimate P and P, using machine
learning techniques. In our earlier work [10], we proposed an
indirect approach of estimating BP via the R and C parame-
ters of 2-element Windkesel model using PPG features. The
proposed approach outperformed [8] and [9] when applied on
a benchmark hospital dataset [11].

All the above-mentioned methods perform well when applied
on clean and noise-free PPG signals. However, PPG signals,
captured using smart phones have several limitations. Smart
phones typically capture video at 30 fps, yielding a very low
sampling rate of the extracted PPG signal (30 Hz) compared
to a clinical pulse-oximeter (100 Hz or more). Ambient lights
also affect the signal. A little finger movement or even vari-
ation in finger pressure can largely affect the signal quality.
All these, make the signal more vulnerable in time domain
and less reliable for analysis.

This paper contributes in detail noise cleaning of smart phone
PPG signal in terms of 1) reducing baseline drift, 2) model-
ing PPG signal with a sum of 2 Gaussian functions and 3)
removing the outlier PPG features, to obtain more accurate
and consistent BP values over [10].

Rest of the paper is organized as follows. Section 2 for-
mulates to estimate BP using 2-element Windkessel model.
Section 3 describes the PPG extraction technique from smart
phone video. Noise cleaning steps and feature extraction from
PPG signals are explained in Section 4 and 5 respectively, fol-
lowed by experimental results and conclusion sections.

2. ESTIMATION OF BP USING 2-ELEMENT
WINDKESSEL MODEL

2-element Windkessel model represents the human cardio-
vascular system in terms of a resistance (R) and capacitance
(C) connected in parallel across an alternative current source
(I(t)) [12]. R and C represent the peripheral resistance and
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arterial compliance. The current I(¢) denotes the blood flow
and the voltage (P(t)), across the circuit indicates the result-
ing blood pressure. Thus the current-voltage relationship be-
comes:

P(t) , ,dP(1)

=1I(t 1
O = 1) M)
The blood flow from ventricles to artery is expressed as a half
wave sinusoidal during systole and zero during diastole:

I(t) - Tpsin(FL), (n—1)T. <t < (n—1)T. + T,
o, (n—1T,+ T, <t<nT,
(2)
T, and Ty are the systolic and diastolic time and duration
of a cardiac cycle is T, = Ts + Ty. If Cy be the cardiac
output (assumed to be 5 lit/minute for all), Iy can be solved
from Eqn.3 as:
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Putting the two conditions of I(¢) in Eqn.1, we can solve for
P, and P, for a cardiac cycle as:

P, = P(t|t = T))
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As shown in [10], PPG features can be used to estimate R
and C parameters using machine learning techniques. How-
ever, unlike linear regression in [10], here we use feed forward
artificial neural network (ANN) to model the non-linearity
between dependent and independent variables. For both R
and C, the optimized ANN structures contain a single hidden
layer with 15 nodes and a single output node. Tan-Sigmoid
activation function is used for the hidden neurons and linear
function for the output neurons. PPG features are applied as
inputs. Levenberg-Marquardt optimization based back prop-
agation is used to update the weight and bias values of the
neurons in training. R and C are calculated from ground truth
P; and P;. At testing, R and C' are estimated from the input
PPG features and training models to calculate P, and Pj.

3. EXTRACTION OF PPG SIGNAL FROM SMART
PHONE VIDEO

Smart phones capture PPG signal in reflective mode [13]. The
users gently place their fingertip on the smart phone camera
with the flash on, to obtain a video sequence of the light re-
flected from fingertip. Having analyzed the conventional ap-
proaches in [13] and [14], we understood that the periodic
nature of PPG signal is caused by the varying intensity of
redness in the region of interest (ROI) of each video frame.
However, Android APIs provide the camera preview infor-
mation in Y CgCp colorspace [15]. Thus further conversion
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to RG B domain in real time causes additional computation
in the mobile device, which may reduce the frame rate of the
captured video. Since the intensity information is carried in
the luminance part of Y CpCRr, we have intuitively used the
Y component for PPG extraction. The value of PPG signal
corresponding to [*" frame of a WX H video segment is cal-
culated as:

W H
PPG(1) =YY Y ;/(WxH) (6)

i=1 j=1
We found that, PPG signal, extracted using the above men-
tioned technique, produces high correlation coefficient (R >

0.9) with the state of the art techniques in [13] and [14].
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Fig. 1. Noise cleaning of PPG signal

4. NOISE CLEANING OF PPG SIGNAL

A typical PPG waveform, captured using Nexus 5 Android
phone is shown in Fig 1(a). It can be observed that the signal
is too noisy for time domain analysis. Our proposed noise
cleaning steps are explained in the following subsections.

4.1. Pre-processing

PPG signal contains a slowly varying DC (due to breathing)
and other high frequency noise components. However, the
fundamental frequency lies between 1 to 1.5 Hz based on the
heart rate of a person (60-90 bpm). Raw PPG signal is shifted
to its zero mean and filtered using a 4" order Butterworth
band-pass filter having cutoff frequencies of 0.5 Hz and 5 Hz
to remove the undesired frequency components.

4.2. Removal of Baseline Drift

Fig. 1(a) shows that PPG signal does not have a fixed base-
line. Moreover, both ends of a single PPG cycle are not often
aligned. Unequal baseline of PPG signal is a major reason
for wrong feature calculation. For a uniformly sampled sig-
nal, say F' be a vector containing all £ samples in one cycle.
We construct a second vector 7' of same length, forming a
line segment between the two endpoints of that cycle, with
k — 2 equally spaced values in between, computed using lin-
ear interpolation (shown in Fig. 1(a) in red). Then the vector
F! = F — T represents the modified cycle with zero base-
line. The effect of proposed pre-processing and baseline re-
moval algorithm on the entire signal in Fig. 1(a) is shown in
Fig. 1(b), making it cleaner for further analysis.
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Fig. 2. Modeling of a PPG cycle with a sum of 2 Gaussians

4.3. Modeling of PPG Signal with Sum of 2 Gaussian
Functions

As mentioned earlier, PPG signals captured using smart
phones are extremely noise-prone and contain several irregu-
larities in shape due to that. Thus, a mathematical modeling
can ensure better signal realization for analysis. It is known
that, a set of uniformly spaced single valued data can be
approximated by a sum of Gaussian functions with good
accuracy [16]. Fig. 1(b) shows that a PPG cycle closely
follows a Gaussian shape. However it is asymmetric in na-
ture and contains two peaks. The major and prominent peak
represents the systolic peak, whereas the minor peak repre-
sents the dicrotic peak. Thus, instead of a single Gaussian,
a sum of 2 Gaussian functions can aptly fit the shape with
better accuracy. If {x; : k = 1,2...N} be a set of equally
spaced data points with corresponding PPG signal value of

{PPG), : k = 1,2,..N}, then our aim is to approximate
P PGy, with yy, as given in Eqn. 7
—(k=b1)? —(k—b3)?2
yp =aie 1 4age >3 fork=1,2,.N (7)

by optimizing the constants aj, by, c1,as, ba, ca, so that the
cost function (hy) in Eqn.8 gets minimized

N
hy = Z (PPG), — yp)? ®
k:

An ideal PPG cycle, fitted using a sum of 2 Gaussian
curves are shown in Fig. 2. Root Mean Square Error (RMSE)
is a popular tool in statistics to measure the goodness of a
curve fitting. Typically a lower value indicates a better fit-
ting. The percentage RMSE between the original and mod-
eled cycle in Fig. 2, fitted with 2 Gaussian curves is found
to be 1.5%. The same becomes 8.3% and 3.6% respectively,
if fitted with a single Gaussian or a Weibull function. For
a more comprehensive performance analysis, we consider a
PPG waveform, containing different possible shapes of PPG
cycle and fit each of them with a sum of 2 Gaussian functions.
The actual and modeled waveform are shown in Fig. 3. The
percentage RMSE between the actual and modeled signal is
computed to be less than 2.5%, indicating the feasibility to
fit any kind of PPG waveform with commendable accuracy,
The constant a, indicates the height of the peak, b; is the po-
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Fig. 3. Modeling of different PPG shapes with 2 Gaussians

sition of the center of the peak and c; controls the width of a
Gaussian curve. So we use some of these model parameters
as additional PPG features for analysis.

5. FEATURE EXTRACTION AND REMOVAL OF
OUTLIERS

Our composite feature set includes a combination of features,
extracted from each cycle of the original PPG signal as well as
the modeled signal. Removal of outlier cycles, caused due to
inaccurate detection of troughs is necessary before applying
the features to the ANN structures. Input signal is split into
rectangular overlapping windows of equal size. If the signal
is assumed to be stationary in nature, mean spectral peak
location across all the windows indicates its fundamental fre-
quency f.. So ideal time period becomes T,, ., = 1/fe.
Now for all the cycles, we calculate the absolute difference
from ideal time period as AT, = |T, — T¢,,..,|- A high
value of AT, indicates a wrongly detected cycle. K-Means
clustering (K=2) [17] is used to remove these outlier cycles.
First, histogram analysis is done for all AT, to initialize the
cluster centroids, followed by 2-Means clustering and esti-
mating of cluster density to remove the outliers. Centroid of
the histogram bin having maximum entries is considered as
the initial centroid (C7) for one cluster. The initial centroid
of the other cluster (C5) is taken as the farthest data point
from C;. K-Means algorithm is used to get the final cluster
centroids. Cluster entries corresponding to the centroid with
lower Xie-Beni index [18] are considered to be compact and
those cycles are used for feature extraction.

Reflective PPG signals are vertically inverted to get the shape
of clinical PPG signal [19] before feature extraction. Apply-
ing the MIC based feature selection technique, mentioned in
[5], we consider the following PPG features in R" feature
space for estimation of R and C': (1) systolic time (75), (2)
diastolic time (7}), (3 and 4) pulse-width at 33% (Bss3) and
75% (Brs) of pulse height respectively, (5) pulse width (7)
of the original signal (all used in [10]), along with (6) ¢y and
(7) co of the fitted Gaussian curves.

6. EXPERIMENTAL SECTION AND RESULTS

Our result section focuses on the improvement achieved over
[10], due to noise cleaning, addition of new Gaussian features
and ANN based learning, in estimating BP, in terms of ac-
curacy and consistency. Initially, 15 healthy persons, aged
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between 30 = 10 years were selected for creating the training
models for R and C. The range of P; and P, of the sub-
jects was 120 + 20 mmHg and 80 £ 10 mmHg respectively.
A Nexus 5 Android phone was used for PPG data collection.
Ground truth BP was measured using a digital BP measuring
device manufactured by Omron [20]. Seated in a complete
rest position, fingertip video of each subject was captured at
320x240 resolutions for 45 seconds in average and stored in
MP4 format using MPEG-4 video codec. The compressed
video was converted to raw YUV video stream using FFm-
peg [21], followed by extraction of PPG signal in Matlab. 8
more subjects were chosen for performance evaluation (Test-
ing). 5 sets of video, each having a duration of 30 seconds
were collected from every subject with 2 minutes of time gap
in between to extract 5 sets of PPG signal. Ground truth BP
of all the subjects remained stable during the phase.

Feature extraction and calculation of BP is done on every
cycle of the PPG signal. The histogram analysis of P, and
P, from a single video of a person, having ground truth BP
of 115/77 mmHg, obtained using method [10] are shown in
Fig. 4(a) and Fig. 4(b) respectively. Fig. 5(a) and Fig. 5(b)
shows the histogram of the same person obtained by incorpo-
rating the proposed noise cleaning steps. It can be observed
that the spread of P and P, across multiple cycles of the
same PPG signal is significantly reduces due to noise clean-
ing. Moreover, it produces more prominent dominant bin in
the histogram of both P, and P, close to the ground truth
value, resulting in better confidence in decision making.
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Fig. 4. Histogram of P, and P, using [10]
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Fig. 5. Histogram of P, and P, after noise cleaning

Table. 1 shows a comparative analysis between [10] and
the proposed methodology for all the 8 subjects across all 5
video sessions. As the method in [10] reported to outperform
[8] and [9], we exclude them in this paper for performance
comparison. For each subject in Table. 1, P; and P, are ex-
pressed in terms of mean + std mmHg over all the cycles
of all 5 PPG signals. The gender (M/F) and ground truth BP
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Table 1. Performance Improvement in Estimating BP over
[10] due to Proposed Noise Cleaning

| Subject [ P,in[10] | P, Here | P;in[10] | P, Here
Sub# 1 (M)

115/77 11345 | 11443 | 7847 75+ 4
Sub# 2 (M)

120/80 118+8 | 11846 | 84+8 82+5
Sub# 3 (M)

125/84 11248 | 11948 | 6513 | 7646
Sub #4 (M)

135/85 121+8 | 12846 | 73+38 7946
Sub # 5 (F)

90/60 97 + 4 95 + 2 65+ 6 62+6
Sub# 6 (F)

120/80 119+4 | 119+4 | 76+6 T7T+4
Sub# 7 (F)

120/82 110+9 | 115+3 | 68+11 | 75+6
Sub# 8 (F)

130/80 119410 | 125+5 | 88+13 | 8444

of each subject are indicated in the first column. PPG signals
extracted from subject 3, 4, 7 and 8 were visibly noisier than
others due to their finger movement during data collection.
The same was reflected in the low PSNR values of their cap-
tured videos compared to others. Results show that, incorpo-
rating the proposed noise cleaning steps, the estimated mean
BP values (both P, and P;) for most of the subjects match
more closely with the ground truth. Moreover, it invariably
decreases the standard deviation in the estimated BP values
across multiple video sessions, implying better consistency in
the final estimation.

It can be also observed that, subjects having cleaner PPG sig-
nals (1, 2, 5, 6), the improvement achieved after noise clean-
ing is minimal. However for noisy PPG, the proposed noise
cleaning effect significantly outperforms [10], justifying its
necessity for phone captured noise prone PPG signal.

7. CONCLUSION

The present work deals with noise cleaning and mathematical
modeling of smart phone captured PPG signal for estimation
of BP. The proposed methodology produces improved accu-
racy and better consistency even on noisy PPG signal. How-
ever, it needs to be successfully tested on larger and demo-
graphically diverse dataset. Our future works include perfor-
mance evaluation of the proposed noise cleaning algorithms
on PPG signal, captured using low cost smart phones as well
as creating generic training models that can work regardless
the hardware configuration. We are also exploring the fea-
sibility of including person specific modeling for further im-
provement in estimation.
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