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ABSTRACT

This paper presents a novel image classification method based on in-
tegration of EEG and visual features. In the proposed method, we
obtain classification results by separately using EEG and visual fea-
tures. Furthermore, we merge the above classification results based
on a kernelized version of Supervised learning from multiple ex-
perts and obtain the final classification result. In order to gener-
ate feature vectors used for the final image classification, we apply
Multiset supervised locality preserving canonical correlation analy-
sis (MSLPCCA), which is newly derived in the proposed method,
to EEG and visual features. Our method realizes successful mul-
timodal classification of images by the object categories that they
contain based on MSLPCCA-based feature integration.

Index Terms— electroencephalogram (EEG), image classifica-
tion, multimodal scheme, decision-level fusion, canonical correla-
tion analysis.

1. INTRODUCTION

Image classification is an important task for image semantic analy-
sis. Thus, various methods which classify images according to ob-
ject categories that these images contain have intensively been pro-
posed [1–3]. In order to classify images automatically, these meth-
ods utilize visual features extracted from each image. Although the
classification accuracy has been improved by using several visual
features [4–7], the improvement of the classification performance
based on the discovery of the new visual features tends to be sat-
urated. Therefore, it is necessary to introduce a new idea such as
solving the problem by using alternative features.

In order to realize image classification based on this approach,
we have proposed an image classification method [8] which utilizes
both EEG features extracted from EEG signals recorded while a user
stares at the images and their visual features. However, this method
utilizes feature vectors generated without considering relationships
between EEG features and visual features. Therefore, the perfor-
mance improvement is expected by using vectors based on feature
integration considering their relationships.

In this paper, we propose a novel image classification method
based on integration of EEG and visual features. The proposed
method consists of two stages. In the first stage, our method calcu-
lates EEG features and visual features, and classifies images based
on Support vector machine (SVM) [9] by using each feature inde-
pendently. Then, in the second stage, our method performs merging
the above classification results, i.e., decision-level fusion. In order
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to perform the decision-level fusion, we employ a kernelized ver-
sion of Supervised learning from multiple experts (KSLME) [8]. In
this method, we utilize feature vectors generated by integration of
EEG and visual features based on a new approach, i.e., the biggest
contribution of this paper. Specifically, in order to integrate EEG
and visual features with considering relationships between them, we
newly derive Multiset supervised locality preserving canonical cor-
relation analysis (MSLPCCA). MSLPCCA enables to apply Super-
vised locality preserving canonical correlation analysis [10] to more
than three variables. Since the conventional method [8] utilizes EEG
features and three types of visual features, it is necessary to derive
MSLPCCA in order to integrate at least four types of features. Then
MSLPCCA enables the feature integration with preserving the local-
ity structure of each variable and using class labels which are gener-
ally effective for the classification problem. Consequently, success-
ful image classification based on EEG and visual features becomes
feasible by our method.

2. IMAGE CLASSIFICATION VIA
MSLPCCA-BASED FEATURE INTEGRATION

The proposed method consists of two stages. In the first stage, we
extract the EEG features from EEG signals recorded while a user
stares at images, and the visual features are computed from these im-
ages. Then we perform image classification based on SVM [9] by in-
putting EEG and visual features into the classifiers, separately. Thus,
multiple classification results are obtained for test data based on each
feature. Furthermore, in the second stage, we employ the kernelized
decision-level fusion approach, i.e., merging the above classification
results, considering their classification accuracy. In this stage, we
utilize feature vectors generated by integrating EEG and visual fea-
tures based on MSLPCCA which is our original method. The details
of our method are described below.
2.1. Feature Extraction and Single Feature-based Image Classi-
fication

In this subsection, we explain the first stage of our method. Specifi-
cally, we explain the EEG features and the visual features used in the
proposed method, and the single feature-based image classification
method is shown.
EEG Feature Extraction
First, segmentation of each channel’s EEG signal is performed at
fixed intervals with an overlapped Hamming window. In this pa-
per, ft (t = 1, 2, · · · , F; F is the total number of EEG segments)
denote EEG segments. Next, we compute the EEG features shown
in Table 1 from each EEG segment. Note that C and P denote the
number of channels of EEG signals and the number of symmetric
electrode pairs placed on the scalp, respectively. Thus, the dimen-
sion of EEG features becomes 6C + 10P. In this table, we calculate
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Table 1. Features used for EEG signals in our method. Note that
C denotes the number of channels of EEG signals and P shows the
number of symmetric electrode pairs placed on the scalp.

The Type of EEG Features Num. of Dimension

Zero Crossing Rate C
θ wave (4-7Hz) C

Content percentage of slow-α wave (7-9Hz) C
the power spectrum mid-α wave (9-11Hz) C

slow-α wave (11-13Hz) C
β wave (13Hz-) C
θ wave (4-7Hz) 2P

Power spectrum of slow-α wave (7-9Hz) 2P
the hemispheric asymmetry [13] mid-α wave (9-11Hz) 2P

slow-α wave (11-13Hz) 2P
β wave (13Hz-) 2P

Zero crossing rate [11] in the time domain, and the other features are
computed in the frequency domain by applying short-time Fourier
transform (STFT) to each channel’s EEG signal. The details of EEG
features in our method are shown in [12].
Visual Feature Extraction
We utilize four kinds of visual features: Scale invariant fea-
ture transform (SIFT) [4], Pyramid histogram of oriented gradi-
ents (PHOG) [6], GIST descriptor [7] and the Intensity histogram
(IHIST). We calculate feature vectors: xVS (∈ R300), xVP (∈ R3400),
xVG (∈ R512) and xVI (∈ R256) based on each method. Note that
we obtain xVS by applying BoF approach [14] to extracted 128-
dimensional SIFT descriptors. Due to the limitation of pages, we
only show the overview of the visual features. The details of each
visual feature are shown in [4, 6, 7].
Single Feature-based Image Classification
We explain the method to classify images based on each feature
in the first stage. First, since relationships between “stimuli to
human beings from the outside” and “which parts of the human
brain are affected by these stimuli” are not well-known, we employ
the feature selection in order to obtain EEG feature vectors. This
means we reduce the dimension of the features shown in Table 1
to select only features useful for the classification. In order to per-
form the dimensionality reduction, we apply Max-relevance and
min-redundancy (mRMR) feature selection algorithm [15] to the
EEG features calculated from each segment and obtain an effi-
cient feature set for the image classification. After this procedure,
x ft

i ∈ Rd ft (i = 1, 2, · · · ,N; N is the number of images included
in training data; d ft is the number of the selected features based on
mRMR algorithm for EEG segment ft) are obtained as EEG feature
vectors for each EEG segment ft (t = 1, 2, · · · , F). As for visual
feature vectors, we directly use the vectors xVS

i , xVP
i , xVG

i and xVI
i ,

separately.

In the first stage of our method, we employ SVM as the clas-
sifier. Although SVM is a two class classifier, image classification
is generally a multi-class problem. Fortunately, since the two class
classification can be easily expanded into multi-class classification
based on one vs. one approach [16] or one vs. all approach [17],
we focus on the improvement of the two class classification perfor-
mance. We train classifiers by separately using EEG feature vec-
tors calculated from each EEG segment and visual feature vectors.
This means multiple classifiers (F+4 classifiers) are respectively ob-
tained based on EEG features x f1

i ,x
f2
i , · · · ,x

fF
i and visual features

xVS
i ,x

VP
i ,x

VG
i ,x

VI
i by using each feature vector for training. There-

fore, we can classify images based on EEG and visual features by
inputting feature vectors extracted from test data into each trained
classifier. Finally, F + 4 kinds of classification results are obtained.

2.2. Multiple Feature-based Image Classification

In this subsection, we explain the method to obtain the final clas-
sification result in the second stage. In the proposed method, we
merge F + 4 classification results obtained in the first stage based
on KSLME proposed in [8] to determine the final classification re-
sult. In the second stage of our method, we newly derive the fea-
ture integration method called “MSLPCCA”. We utilize this method
to generate feature vectors from EEG and visual features and input
them into the KLSME. In this subsection, we merge 1, 2, · · · , F EEG
segments’ classification results and 4 classification results based on
visual features. In the proposed method, we regard the F + 4 classi-
fiers based on EEG features extracted from each EEG segment and
visual features as F+4 annotators. In order to merge multiple classi-
fication results, we focus on the classification accuracy of each anno-
tator and assign higher weights to classification results of annotators
which have higher classification accuracy. The details of the second
stage are shown below.

2.2.1. MSLPCCA-based Feature Integration

We explain the feature integration method called “MSLPCCA”. We
generate new integrated feature vectors by applying MSLPCCA
to EEG features and visual features. First, we define 5 variables
X1,X2, · · · ,X5 as X r = [xr(1)

1 ,x
r(1)

2 , · · · ,xr(1)

n1
,xr(0)

1 ,x
r(0)

2 , · · · ,xr(0)

n0
],

where xr(·)
i ∈ Rdr

, n1 + n0 = N, and xr(1)

i and xr(0)

i are respectively
feature vectors assigned to positive and negative classes. In the pro-
posed method, 5 variables correspond to XE,XVS ,XVP ,XVG and
XVI , respectively. In particular, xE(·)

i in a variable XE are generated
by 1, 2, · · · , F EEG segments’ features. We obtain these feature
vectors by calculating the average and standard deviation of each
EEG feature from 1, 2, · · · , F EEG segments.

Next, we calculate similarity matrices SX1
,SX2

, · · · ,SX5
in the

same way as Locality preserving projection [18]. The (i, j) th com-
ponent of each matrix is obtained as follows:

S Xr

i j =

e
−‖xr(·)

i −xr(·)
j ‖

2
/σ2

xr if xr(·)
j ∈ Ωk

xr(·)
i

or xr(·)
i ∈ Ωk

xr(·)
j

0 otherwise.
(1)

In Eq. (1), Ωk

xr(·)
i

is a set of k neighbors of xr(·)
i , and these neighbors

are defined by the Euclidean distance. In addition, σ2
xr is calculated

by σ2
xr =

ξr

N(N−1) , where ξr is the sum of the squared distances be-
tween all two vectors in X r. Furthermore, in the proposed method,
if two vectors corresponding to (i, j) th component of SXr

have dif-
ferent class labels, we replace the value of S Xr

i j as zero. This proce-
dure enables to introduce supervised learning. After this procedure,
we define similarity matrices as S̃Xr

.
We calculate weight matrices U 1,U 2, · · · ,U 5, which maximize

the following correlation between variables X1,X2, · · · ,X5, by us-
ing similarity matrices as follows:

Maximize
5∑

r=1

5∑
s=1

U r>XrLrsX s>U s,

subject to
5∑

r=1

U r>XrLrrXr>U r = 1. (2)

Weight matrices can be obtained by solving the generalized eigen-
value problem. Thus, each weight matrix is Û r = [ur

1,u
r
2, · · · ,ur

Ne
],

where ur
l ∈ Rdr

is the eigenvector, and Ne is the number of posi-
tive eigenvalues. In Eq. (2), Lrr = Drr − S̃Xr ◦ S̃Xr and Lrs =

Drs − S̃Xr ◦ S̃Xs , respectively. Note that “◦” denotes the Hadamard
product, and Drr = diag(

∑
i (S̃ Xr

1i )2,
∑

i (S̃ Xr

2i )2, · · · ,∑i (S̃ Xr

Ni )
2) and
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Drs = diag(
∑

i S̃ Xr

1i S̃ Xs

1i ,
∑

i S̃ Xr

2i S̃ Xs

2i , · · · ,
∑

i S̃ Xr

Ni S̃
Xs

Ni ), respectively.
By using generated weight matrices Û 1, Û 2, · · · , Û 5, we obtain

feature vectors based on integration of EEG and visual features as
follows:

xEV
i =

[
x1(·)>

i Û1,x2(·)>

i Û2, · · · ,x5(·)>

i Û5
]>
. (3)

MSLPCCA considers the class label of each vector and realizes fea-
ture integration with preserving a locality structure of each variable
in new feature space. Therefore, we generate feature vectors, which
are effective for image classification using both EEG and visual fea-
tures, in Eq. (3) based on MSLPCCA.

2.2.2. Each annotator’s classification accuracy and classification
model

We explain the classification accuracy of each annotator and the clas-
sification model defined in our method. Let ya ∈ {0, 1} be the la-
bel assigned to the feature vector xEV by annotator a ∈ A, where
A = { f1, f2, · · · , fF ,VS,VP,VG,VI} is a set of annotators, and f
and V correspond to Frame (EEG segment) and Visual, respectively.
Given the actual label y ∈ {0, 1}, i.e., ground truth, the classification
accuracy of each annotator, Pa

se (sensitivity) and Pa
sp (specificity) are

respectively defined as follows:
Pa

se := Pr[ya = 1|y = 1], (4)
Pa

sp := Pr[ya = 0|y = 0]. (5)

In our method, a classification model is specifically written as:
fw(xEV) = w>φ(xEV), (6)

where w is a weight.
In Eq. (6), φ(xEV) is obtained by mapping the feature vector

xEV into a high-dimensional feature space. The final classification
result ŷ is obtained as follows:

ŷ =
1 fw(xEV) ≥ τ

0 otherwise,
(7)

where τ is a predetermined threshold. Given the training dataset D
consisting of N feature vectors xEV

i (i = 1, 2, · · · ,N), a weight w is
specifically written as follows:

w =
N∑

i=1

αiφ(xEV
i ), (8)

where α = [α1, α2, · · · , αN]>. Therefore, by using α in Eq. (8), the
discriminating function in Eq. (6) is rewritten as follows:

fw(xEV) = w>φ(xEV)

=

N∑
i=1

αiK
(
xEV

i ,x
EV
)
, (9)

where K(·, ·) is a kernel function of φ(·), and we specifically em-
ploy the Gaussian kernel. In order to determine the discriminating
function fw(·), we have to obtain the coefficients αi (i = 1, 2, · · · ,N)
from training data by using each annotator’s classification accuracy
defined in Eqs. (4) and (5). The details are shown below.

2.2.3. Training Phase

Given the training data D consisting of N feature vectors with
the classification results by F + 4 annotators and their actual
labels, D = {yi,φ(xEV

i ),Yi}Ni=1, where yi is the actual label and
Yi = {y f1

i , y
f2
i , · · · , y

fF
i , y

VS
i , y

VP
i , y

VG
i , y

VI
i } is a set of classification

results, the estimation target is the coefficients αi (i = 1, 2, · · · ,N) in
Eq. (9). From the training data D, the likelihood of the coefficient
vector α is defined as:

Pr [D|α] =
N∏

i=1

Pr
[
Yi |φ(xEV

i ),α
]
. (10)

By using a set of sensitivity Pse = {P f1
se , P

f2
se , · · · , P fF

se , P
VS
se , P

VP
se , P

VG
se ,

PVI
se } obtained from each annotator and that of specificity Psp =

{P f1
sp, P

f2
sp, · · · , P fF

sp , P
VS
sp , P

VP
sp , P

VG
sp , P

VI
sp }, the above equation is rewrit-

ten as follows:

Pr[D|α] =
N∏

i=1

{
Pr[Yi |yi = 1,Pse] × Pr[yi = 1|φ(xEV

i ),α]

+ Pr[Yi |yi = 0,Psp]× Pr[yi = 0|φ(xEV
i ),α]

}
. (11)

If it is assumed that each annotator a ∈ A is independent each other,
Pr[Yi|yi = 1,Pse] can be rewritten as follows:

Pr[Yi |yi = 1,Pse] =
∏
a∈A

Pr[ya
i |yi = 1, Pa

se]

=
∏
a∈A

[Pa
se]ya

i [1 − Pa
se]1−ya

i . (12)

Similarly, Pr[Yi|yi = 0,Psp] can be rewritten as follows:

Pr[Yi |yi = 0,Psp] =
∏
a∈A

Pr[ya
i |yi = 0, Pa

sp]

=
∏
a∈A

[Pa
sp]1−ya

i [1 − Pa
sp]ya

i . (13)

Then the likelihood in Eq. (11) is rewritten as

Pr[D|α] =
N∏

i=1

[γiρi + δi(1 − ρi)], (14)

where
γi =

∏
a∈A

[Pa
se]ya

i [1 − Pa
se]1−ya

i , (15)

δi =
∏
a∈A

[Pa
sp]1−ya

i [1 − Pa
sp]ya

i , (16)

and

ρi = Pr[yi = 1|φ(xEV
i ),α]

=
1

1 + exp(−α>κi)
, (17)

where κi =
[
K(xEV

1 ,x
EV
i ),K(xEV

2 ,x
EV
i ), · · · ,K(xEV

N ,x
EV
i )
]>

. The
maximum-likelihood estimator is found by maximizing the follow-
ing log-likelihood:

α̂ML = arg max
α

{
lnPr[D|α]

}
. (18)

Let L = {y1, y2, · · · , yN} be the set of the actual labels, and the com-
plete data log-likelihood can be written as

lnPr[D,L|α] =
N∑

i=1

{
yilnρiγi + (1 − yi)ln(1 − ρi)δi

}
. (19)

In order to maximize this likelihood, the following Expectation-
Maximization (EM) algorithm [19] is adopted.
E-step
In the E-step, when the training data D and the current estimate of
the coefficient vector α are given, the conditional expected value of
log-likelihood is computed as follows:

E
{
lnPr[D,L|α]

}
=

N∑
i=1

{
µilnρiγi + (1 − µi)ln(1 − ρi)δi

}
, (20)

where µi is computed as follows:

µi ∝ Pr[Yi |yi = 1,α] × Pr[yi = 1|φ(xEV
i ),α]

=
γiρi

γiρi + δi(1 − ρi)
. (21)
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Table 2. Image Classification Accuracy: These values are the average and standard deviation over all target image categories.
Conventional Method [8] Only Visual Features Only EEG Features Proposed Method

SIFT PHOG GIST IHIST
subject A 79 ± 0.10% 59 ± 0.30% 82± 0.06%
subject B 87± 0.05% 77 ± 0.05% 87± 0.05%
subject C 88± 0.06% 68 ± 0.07% 67 ± 0.07% 67 ± 0.09% 71 ± 0.01% 72 ± 0.09% 88± 0.02%
subject D 94± 0.05% 69 ± 0.02% 93 ± 0.04%
subject E 93 ± 0.04% 71 ± 0.08% 95± 0.02%

M-step
In the M-step, the coefficient vector α is estimated based on the
current estimate µi and the training data D by maximizing the con-
ditional expected value in Eq. (20). Specifically, by solving equation
∂
∂α
{lnPr[D,L|α]} = 0, we obtain the estimated coefficient vector α

as follows:
α← α − ηH−1g. (22)

In Eq. (22), g is a gradient vector, H is a Hessian matrix and η
is a step length. The gradient vector g and the Hessian matrix H
are respectively computed as follows: g =

∑N
i=1[µi − σ(α>κi)]κi

and H = −∑N
i=1[σ(α>κi)][1 − σ(α>κi)]κiκ

>
i , where σ(α>κi) =

1
1+exp(−α>κi)

.

2.2.4. Testing Phase

Given the test data, the final classification result is obtained as fol-
lows. In the previous phase, we essentially solved a regular logistic
regression problem with probabilistic labels µi. Thus, we obtain the
final classification result by applying a threshold to µ calculated from
a test data {φ(xEV), y f1 , y f2 , · · · , y fF , yVS , yVP , yVG , yVI }, where its la-
bel is unknown, instead of directly using α̂ML. The value of µ is com-
puted by using the estimated coefficient vector α̂ML and γ, δ calcu-
lated from the training data. Specifically, ρ = 1

1+exp(−α̂>MLκ) is calcu-

lated, where κ =
[
K(xEV

1 ,x
EV),K(xEV

2 ,x
EV), · · · ,K(xEV

N ,x
EV)
]>

.
Then, γ =

∏
a∈A[Pa

se]
ya

[1 − Pa
se]

1−ya
and δ =

∏
a∈A[Pa

sp]1−ya
[1 − Pa

sp]ya

are obtained, where Pa
se and Pa

sp are accuracy of annotator a calcu-
lated from training data and ya is classification result of the test data.
Therefore, we obtain the final classification result considering each
annotator’s accuracy. Then µ = γρ

γρ+δ(1−ρ) is computed by using ρ, γ
and δ. Finally, we obtain the final classification result as follows:

ŷ =
1 µ ≥ µ′

0 otherwise,
(23)

where µ′ is a predetermined threshold. The value of µ is the posterior
probability.

3. EXPERIMENTAL RESULTS

In this section, we show experimental results to verify the effective-
ness of the proposed method. First, we explain image dataset and
EEG signal collection. In this experiment, we utilized Caltech101
dataset [20]. Specifically, we used the images included in “panda”,
“soccer ball” and “strawberry” in the database for image classifi-
cation, and the number of images was 35 per category. These 105
images were randomly selected in advance. In this paper, we define
images used for image classification as target images. We also used
images included in “airplane”, “elephant”, “joshua tree”, “pyramid”
and “stapler” in the same database for the non-target images.

Next, we explain how to collect EEG signals in this experiment.
In this study, five healthy subjects (subject A, B, C, D and E) partici-
pated, and EEG recordings were conducted during staring at images.
The age of each subject was 22 or 23 years old. We recorded EEG
signals from 12 channels (Fp1, Fp2, F7, F8, T3, T4, C3, C4, P3,

P4, O1 and O2) according to the international 10-20 system. Since
EEG signals are weak, we amplified these signals by using an am-
plifier (MEG-6116M, NIHON KOHDEN). We also applied a band-
pass filter to recorded EEG signals to avoid artifacts, and set the filter
bandwidth to 0.04-30Hz. In addition, the EEG signals were sampled
at 2kHz. In this experiment, we collected single-trial EEG signals
for each target image by the same experimental procedure as those
shown in our previous work [8]. Note that the time length of staring
at each image was two seconds (subject A and B) and three seconds
(subject C, D and E). In this experiment, we perform image classi-
fication by using first one second of EEG signals recorded while a
subject stared at target images.

Furthermore, we present the experimental condition. In this ex-
periment, we performed the three class image classification (panda,
soccer ball and strawberry) by the object categories that images con-
tain based on one vs. all approach [17]. Therefore, the final classi-
fication was determined according to the posterior probability ob-
tained from the testing phase (2.2.4). We followed [2, 3] for our
experimental setup. Specifically, we randomly selected 30 training
images per class and tested on the remaining images. Then we cal-
culated the classification accuracy which was normalized according
to the number of test images per class. We repeated the random se-
lection 10 times and show the average classification accuracy over
all classes.

We show the results of image classification in Table 2. As for the
proposed method, we vary the number of neighbors k in Eq. (1) and
present the best results. In this table, we also show the results of the
conventional method [8]. From the obtained results, the proposed
method realizes more accurate classification than the conventional
method [8]. Therefore, the effectiveness of our method can be veri-
fied. Thus, the feature integration based on MSLPCCA is effective
for the image classification using both EEG and visual features. In
Table 2, we also present the average image classification accuracy by
using either EEG or visual features based on SVM. From this table,
although accuracy obtained by using each feature separately is not
satisfactory, our method realizes successful classification based on
collaborative use of all features.

4. CONCLUSION

In this paper, we have proposed a novel image classification method
based on MSLPCCA-based feature integration. MSLPCCA enables
the feature integration with preserving the locality structure of each
variable and using class labels which are generally effective for the
classification problem. In our method, this method is applied to
EEG and visual features in order to generate feature vectors for the
decision-level fusion of the image classification. Experimental re-
sults show the effectiveness of the proposed method.
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