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ABSTRACT 

 
Automatic cell tracking for time-lapse images becomes 

more and more important for live cell studies because the 

manual tracking is extremely time consuming. In this paper, 

we proposed a method for C.elegans cell tracking based on 

probabilistic relaxation labeling (PRL). The experiment 

results obtained in this research indicate that our method 

could track the C.elegans cells with a high accuracy at a 

very low time resolution. Our method provides an efficient 

tool for the analysis of high-throughput large C. elegans 

microscopy image data sets. 

Index Terms— Cell tracking, C. elegans, probabilistic 

relaxation labeling. 

 

1. INTRODUCTION 

 

Three-dimensional (3D) time-lapse images of C. elegans 

embryos provide highly valuable information for functional 

genomics studies [1-3]. According to these 3D images, a 

cell lineage tree of C. elegans could be built, which could be 

used for further biological analysis at a single cell 

resolution. However, due to the massive amounts of imaging 

data, it is almost impossible to build the lineage tree 

manually. So an efficient algorithm for automatically cell 

tracing is needed for the lineage tree generation. In this 

paper, we propose a method based on the probabilistic 

relaxation labeling (PRL) to track the cells.  

    The greatest challenge for cell lineage tracking comes 

from the fact that at the end stage of the embryogenesis, the 

cell number is over 500 and almost all of these cells are 

crowed together. In addition, in order to get more imaging 

dataset, one microscope will collect images from 3 to 4 

different embryos simultaneously. Therefore, the time 

resolution (60 – 90 second per time point) is not enough for 

a precise definition of all the one-to-one or one-to-two 

(division) matching since even in two adjacent time points, 

the same cell may move a long distance or divided 

suddenly. Our method focuses on these two problems, 

which tries to do cell tracking with a high accuracy rates at 

very late cell stage (>500) and very low time resolution 

(>180s). 

    The most popular C. elegans cell lineage tracking tool is 

StarryNite [4] and its later version StarryNite II [5]. 

StarryNite and StarryNite II are all based on nearest 

neighbor (NN) matching, and StarryNite II introduces a 

layered greedy approach to correct the tracking errors. 

Another method is based on Support Vector Machines. In 

this tracking method, many other features like cell radius 

also have been used to improve the tracking performance 

[6]. Other method with multiple active surfaces [10] and 

model-based approach [11] only perform well at early stage 

(<180). When more cells become crowded together, the 

tracking errors will explode. 

    In this paper, we propose an algorithm for cell tracking in 

the C. elegans 4D imaging system based on the PRL. In our 

method, firstly we transfer the tracking problem into a one-

to-one non-rigid point matching problem. Then we used the 

relative position information to represent each cell. The 

reason why relative position is better than absolute position 

is that the relative position could represent the local 

structure of embryo. The local structure of the embryo will 

not change a lot within a short time. The experiment results 

prove that our method based on the relative position could 

tracking cells with a low time resolution with a high 

accuracy. Furthermore, our method also has a low 

computational complexity.  

    This paper is organized as follows. In Section 2, we 

explain how to treat the cell tracking problem as a non-rigid 

point matching problem. Section 3 describes the PRL point 

matching framework used to tracking the cell in C. elegans 

data. Section 4 presents the experiment results. Section 5 

provides conclusions and directions for future work. 

 

2. PROBLEM FORMULATION 

 

A cell may appear at adjacent time points or divide into two 

new cells during the time interval. Before cell tracking, the 

original 3D time-lapse image will be processed by a 3D 

segmentation process after which the 3D position of every 

cell at every time point will be obtained for the cell lineage 

tracking [9]. Then the cell-tracking procedure tries to define 

the relationship of cells at different time points by tracing 

the cell at one by one time point and finally produces a cell 

lineage tree, which contains a lot of valuable information 

such as the cell cycle, gene expression value and 3D 

position etc., which could be used for further biological 

analysis [4]. However, at the late stage of embryogenesis, 

hundreds of cells will be crowded together. So when the cell 

move a distance longer than the cell diameter, which easily 

937978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



happens when the time resolution is low, the nearest 

neighbor (NN) matching will make many tracking errors.   

 

 
Figure 1. A raw cell image and the cell lineage tree.  

 

    In our method, we convert the cell-tracking problem into 

a point-matching problem. Let us define the cells detected in 

time point 𝑡 as a set of points 𝑄𝑡 = {𝑞1, 𝑞1, … , 𝑞𝑛}, and the 

cells detected in the next time point 𝑡 + 1 as another set of 

points  𝑆𝑡+1 = {𝑠1, 𝑠2, … , 𝑠𝑚}. The number of cells at time 

point 𝑡 + 1 should be equal or larger than that at time point 

𝑡 because of cell division. Therefore, additional points are 

introduced in time point t to represent the “dummy cells”. 

Then the first point sets will be 𝑄𝑡
′ =

{𝑞1, 𝑞1, … , 𝑞𝑛 , 𝑞𝑑𝑢𝑚𝑚𝑦
′ }. The new divided cells in time point 

𝑡 + 1 could be matched to dummy cell 𝑞𝑑𝑢𝑚𝑚𝑦
′  and other 

non-divided cell can be matched one-to-one. Thus, the 

tracking problem becomes a non-rigid point-matching 

problem, the task is to find out all the one-to-one matching 

between every point sets. 

    In order to solve the non-rigid point-matching problem, a 

method employing probabilistic relaxation labeling (PRL) is 

adopted in this work [7-8]. Based on the relative position, 

the matching probability between 𝑞𝑖  and 𝑠𝑗  will be 

initialized according to their Euler distance with other cells 

at the same time point. Compared with absolute position, the 

relative distance is a better feature than for tracking which 

could characterize the local structure of the embryo. In other 

words, the local structure matching is better than the nearest 

neighbor (NN) matching. It is because that, the cell could 

move a long distance, but cells will never exchange their 

position with each other during a short time period. As 

illustrated in figure 2, cell 𝑞𝑧 at time point 𝑡 would wrongly 

match to cell 𝑠𝑦  at time point 𝑡 + 1  based on the nearest 

neighbor (NN) matching method. However, the relative 

position shows that the cell 𝑠𝑦  should match to cell 𝑠𝑥  at 

time point 𝑡. So our method based on the relative position 

would have a better performance when tracking cells at a 

low time resolution.  

 

3. PROPOSED METHOD 

 

The cell-tracking procedure using our PRL-based tracking 

approach contains 3 steps:  

(1) Computing the compatibility coefficient based on 

cell-to-cell distance; 

(2) Matching probability initialization; 

(3) Relaxation labeling iteration.  

 

3.1 Computing the compatibility coefficient  
 

As discussed before, the relative position information is 

used for the initialization of the matching process. So firstly 

at every time point, we calculate all the Euclidean distance 

between every point pair. As shown in Figure 2, cell 𝑞𝑖 and 

𝑞𝑥 are at time point 𝑡 and cell 𝑠𝑗 and 𝑠𝑦  at time point 𝑡 + 1, a 

compatibility coefficient can be determined as  

 

 
𝑐𝑖𝑗𝑥𝑦

𝑡,𝑡+1 = 1 − |
𝑑𝑡(𝑞𝑖 , 𝑞𝑥) − 𝑑𝑡+1(𝑠𝑗 , 𝑠𝑦)

𝑑𝑡(𝑞𝑖 , 𝑞𝑥) + 𝑑𝑡+1(𝑠𝑗 , 𝑠𝑦)
|, (1) 

 

where 𝑑𝑡(𝑞𝑖 , 𝑞𝑥)  is the distance between cell 𝑞𝑖  and 𝑞𝑥 , 

𝑑𝑡+1(𝑠𝑗 , 𝑠𝑦)  is the distance between cell 𝑠𝑗  and 𝑠𝑦 . The 

compatibility of cell 𝑞𝑖  matching cell 𝑠𝑗  and cell 𝑞𝑥 

matching cell 𝑠𝑦  is represented by the compatibility 

coefficient 𝑐𝑖𝑗𝑥𝑦
𝑡,𝑡+1

 ranging from 0 to 1. A high value of 𝑐𝑖𝑗𝑥𝑦
𝑡,𝑡+1

 

means a high compatibility between 𝑞𝑖  matching 𝑠𝑗  and 𝑞𝑥 

matching to 𝑠𝑦 . 

 
3.2 Matching probability initialization 
 

The initialization is essential in our method. It is because 

that the probabilistic relaxation labeling (PRL) method will 

only converge to a local optimal matching solution based on 

the initialization result. According to the compatibility 

coefficient defined above, the probability of cell 𝑞𝑖 

matching cell 𝑠𝑗 is given by 

 

 𝑝𝑖𝑗 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑦
𝑡,𝑡+1𝑚

𝑦=1
𝑛
𝑥=1 , (2) 

 

Note that 𝑝𝑖𝑗  is supported by 𝑐𝑖𝑗𝑥𝑦
𝑡,𝑡+1

, which means that the 

probability of cell 𝑞𝑖  matching cell 𝑠𝑗  depends on whether 

the matching is compatible with other matching pairs. 
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Figure 2. Matching cell pairs at two time points. 

 

Finally the overall correspondence matrix between time 

point t and time point 𝑡 + 𝑎 is determined as fellow: 

 

 
𝑃𝑡,𝑡+1 = [

𝑝11 ⋯ 𝑝1𝑚

⋮ ⋱ ⋮
𝑝𝑛1 ⋯ 𝑝𝑛𝑚

], (3) 

 

Each row will be normalized before the third step so that 

𝑝𝑖𝑗 ∈ [0,1]. 

 

3.3 Relaxation labeling interaction 

 

An initial correspondence matrix is defined after the above 

two steps. However, correspond matrix 𝑃𝑡,𝑡+1  only 

represents a soft matching relationship, since the matching 

probability 𝑝𝑖𝑗 in this matching matrix is ranged from 0 to 1. 

In order to obtain a certain matching relationship, the 

matching matrix 𝑃𝑡,𝑡+1  will iteratively update according to 

the following equation. The iteration is carried out as 

follows and will stop if all the elements in the matching 

matrix 𝑃𝑡,𝑡+1  are close to 0 or 1: 

 

 
𝑝𝑖𝑗

𝑘+1 =
∑ ∑ 𝑐𝑖𝑗𝑥𝑦

𝑡,𝑡+1
𝑝𝑖𝑗

𝑘𝑚
𝑦=1

𝑛
𝑥=1

∑ ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑦
𝑡,𝑡+1𝑝𝑖𝑗

𝑘𝑚
𝑗=1

𝑛
𝑖=1

𝑚
𝑦=1

𝑛
𝑥=1

, (4) 

 

where 𝑝𝑖𝑗
𝑘+1 is the probability of cell 𝑞𝑖 matching cell 𝑠𝑗 after  

(k+1)-th iteration. According to the update equation, the 

probability of each correspondence relationship between 

two cells is dependent on the other cell pairs. If a 

corresponding relationship is supported by other 

correspondence cell pairs, the probability of this matching 

relationship will increase. Otherwise the probability will 

decrease. Finally, when the matching matrix only contains 

values close to 0 or 1, a one-to-one matching result is 

obtained [7,13]. 

 

 
Figure 3. 3D representation of cell matching between two adjacent cell 

stages. New cells from cell division are shown in color. 

 

    Due to the cell division, sometimes the adjacent two time 

points may have different numbers of cells. So if the cell 

numbers of two adjacent time point are not equal, we will 

add dummy cell in the first point set, as discussed in Section 

2. For example, if cell 𝑠𝑗 at time point 𝑡 + 1 does not match 

to a real cell according to the correspondence matrix 𝑃𝑡,𝑡+1, 

which means that this cell matches to a dummy cell, cell 𝑠𝑗 

will be identified as a new cell generated from cell division. 

Based on this kind of idea, all these cell divisions could be 

detected. 

 

4. EXPERIMENTAL RESULT 

 

The efficiency of our method was evaluated with 2 embryo 

imaging data sets, each containing 200 time points with a 

time resolution of 90 seconds. The number of tracking 

required for the built up of one lineage tree is over 20,000 

and a total of more than 50,000 tracking of cell pairs are 

performed in this analysis for two embryo imaging data sets. 

As discussed before, cell segmentation has been performed 

before cell tracking to determine all the cell positions at 

every time points [9]. The cells position data were further 

checked manually to ensure that all the cell position data are 

error-free. 
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Figure 4. The number of tracking errors per time point at different cell 

stages. 

 

    A high accuracy rate is extremely important because even 

1% error rate will cost hours of time for manfully editing the 

lineage. For example, a laboratory scientist needs 10 to 30 

seconds to identify and correct one tracking error caused by 

the tracking algorithm, which means that one image data set 

may need 20,000  1% 10 ≈ 3 hours to editing before 

further biological studies. The accuracy of our method is 

analyzed by comparison of our tracking solution and the 

error-free manually built lineage trees. The comparison 

result is shown in Figure 4. At < 350 cell stage, our tracking 

accuracy rate is over 99.7%. Despite the decreasing 

tendency of accuracy rate as the number of cells at one time 

point increases, our method can still maintain a high 

accuracy rate even at very late stage. As demonstrated in 

Figure 4, there is an average of only 3 tracking errors at > 

350 cell stage. 

 

 
Figure 5. Computing time for one tracking at different cell stages. 

 

    Another important performance indicator for a tracking 

method is the computational complexity, which is also 

verified in our experiment. Computational complexity is 

important because of the large number of data sets. A low 

computational complexity is really needed when for high-

throughput analysis. In this paper, our method is 

implemented in Python and C++. In Figure 5, the time 

required for one tracking is presented, which is largely 

determined by the number of cells at a time point. On a 3.47 

GHz PC with 10GB of RAM, the computing time of our 

method for once matching is 0.3 to 2.3 seconds with a single 

threaded process. For one full lineage tracking from 4 to 550 

cell stages, the overall required time is about 720 seconds, 

which is quick enough for a high-throughput analysis. 

Furthermore, because the matching processes are 

independent, it is easy to realize our method with multi-core 

CPUs (Table 1) or GPUs. So we believe that our method is 

also suitable for high-throughput image data analysis. 

 
Table 1 Multi-Core test 

 1 core 4 cores 12 cores 

Time (seconds) 720.4 217.8 85.9 

 

 

5. CONCLUSION 

 

In this paper, we have introduced an automatic cell tracking 

method based on probabilistic relaxation labeling (PRL). 

The cell tracking problem was treated as a point-point 

matching problem. The experiment results with the C. 

elegans image data show that our method could reach an 

average of 99% accurate rate at a low time resolution (90 

seconds). Furthermore, our method has a high speed, 

making it suitable for parallel computing, which can provide 

a significant advantage for the high-throughput image 

analysis. Future research should focus not only on the using 

the probabilistic relaxation labeling (PRL) for other type of 

image data like zebra-fish and plant, but also comparing the 

cell embryo structures.  
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