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ABSTRACT

This paper addresses the problem of scanner induced low fre-
quency drift estimation in order to improve the significance of
functional magnetic resonance imaging (fMRI) data for statis-
tical analysis. A novel technique is presented to estimate the
drift parameters using a sparse general linear model (sGLM)
framework. The fMRI signal is modeled as a linear mixture
of several signals such as low frequency trend, brain hemody-
namic, physiological noise and unexplained signal variations.
These signals are considered as underlying sources and sparse
dictionary learning (SDL) is used to estimate them. The supe-
rior performance of the proposed technique compared to other
detrending techniques is illustrated using a simulation study.
Furthermore, the proposed technique is validated using real
fMRI data, which shows its better capability to estimate drift
in presence of spatiotemporal dependencies.

Index Terms— K-SVD, CCA, DCT, fMRI, detrending

1. INTRODUCTION

The tasks associated with fMRI statistical analysis generally
consists in answering three questions i) which areas of the
brain are activated in response to a given stimulus [1], ii) what
is it the temporal dynamics of the activated brain areas dur-
ing activation [2] and iii) how are the connections between
the different activated brain areas [3]. For fMRI, GLM is a
widely accepted hypothesis-driven mass-univariate approach
to analyze regional brain activity [4]. It requires regressors
for its design matrix that includes canonical hemodynamic
response function (HRF) and its derivatives convolved with
a stimulus function [5]. Due to lack of prior knowledge about
HRF variability, over subjects and experiments [6], and other
unexplained variations, data-driven methods are considered
to provide an alternative to hypothesis based fMRI analy-
sis. The data-driven exploratory techniques such as principal
component analysis (PCA) [7], independent component anal-
ysis (ICA) [8] and canonical correlation analysis (CCA) [9]
aim at exploring unique hidden patterns based on covariations

in the multivariate data such that task-related blood-oxygen-
level dependent (BOLD) time-series and other time-varying
effects can be separated. Nevertheless, they have shown infe-
rior results to sparsity based learning that better captures the
spatiotemporal characteristics [10, 11, 12, 13, 14].

However, the presence of lag one autocorrelations due
to low frequency drifts can compromise the performance of
sparsity based learning. Their elimination from fMRI data is
substantial for better results from SDL. If not removed, their
non-sparse nature will cause trained dictionary atoms to con-
tain lag one autocorrelations. Previous studies have shown
that drifts exhibit high global correlations [15], thus causing
failure of SDL algorithms in disintegration of temporal mix-
tures of brain hemodynamics from non-hemodynamics on the
basis of a sole assumption of sparsity [16]. To resolve this
problem sGLM model assumed a unique drift at each voxel
and used a linear combination of discrete cosine transform
(DCT) basis functions to prefilter trends from the data [10].

On the other hand CCA based exploratory technique as-
sumes a global drift and retrieves it on the basis of autocorre-
lation maximization which can be pre-filtered from the fMRI
data [17]. Using a similar approach, we allow SDL itself
to estimate the drift source. This retrieved drift can be pre-
filtered from the fMRI data using least square fit. The pro-
posed technique has been built upon the existing framework
of sGLM and therefore can be used for task related activation
detection and resting state functional connectivity analysis.

2. METHODS

For the sparse GLM model, consider a fMRI BOLD signal xi
at the i-th voxel over the course of N scanned volumes to be
represented as a linear combination of exactly or less than k
atoms from an unknown dictionary A ∈ RN×l on the basis of
sparse response signal strength φi ∈ Rl,

xi = Aφi + ei, i = 1, 2, ..., v (1)

where N � l,the residual ei ∈ RN is a random Gaussian
noise vector with variance σ2

i , distributed as N (0, σ2
iΛ),
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with temporal correlation Λ that accounts for the correlated
noise. Here, drift is modeled as a realization of long memory
noise process and different detrending techniques are used
for its elimination from the data. A Gaussian filter based
pre-coloring is used for the removal of high frequency auto-
correlations. The correlation matrix Λ can then be assumed
as an identity matrix IN ∈ RN×N . After detrending and
pre-coloring, the model in (1) can be addressed using SDL
algorithm such as [11] to learn A and Φ.

Algorithm 1: Identifying drift among CCA compo-
nents
Given: Xd ∈ RN×v ,
1. Compute DCT basis [18] to obtain drift matrix At

using bm =
√

2
NCos(

π(2n+1)m
2N ), where m =

1, ...M , n = 0, 1, ..N − 1, M = b 2N
fsfc

+ 1c is
the number of basis, fs is the sampling frequency,
and fc is the cut-off frequency, respectively

At = BBᵀXd (2)

2. For a normalized Xd, solve Xᵀ
dXdu = λu, where

λ and u are the eigenvalues and eigenvectors, re-
spectively, to obtain principal components along
temporal dimension [19] as, Xp = Xdu

3. Use canonical correlation [19] to measure autocor-
relation between Xp and Yp = Xp(n−1), by solv-
ing Σ−1XpXp

ΣXpYp
Σ−1YpYp

ΣYpXp
u = ρu, where ρ

and u are canonical coefficients and weights, re-
spectively, and Σ signifies a correlation matrix, to
obtain, Xc = Xpu

4. Regression analysis between Xc and At,

ati = Xcωi + ε, i = 1, 2, ...v, (3)

5. Calculate max(diag(ΩΩᵀ)) to identify location
of drift ac among CCA components.

The proposed technique for detrending is applied on pre-
colored and nondetrended data-set Xd followed by further
analysis for statistical inferences. This whole scheme consists
of four steps i) learning drift from the training data during the
first pass of SDL under the assumption of an overcomplete
dictionary, N � l, ii) locating drift among dictionary atoms
using the combination of DCT and CCA, so that the whole
scheme can be executed in an unsupervised manner, iii) re-
moving drift from the training data using least square fit, and
iv) relearning dictionary from the detrended data. During the
first pass, a dictionary Ad is learned from data-set Xd, which
contains two kinds of temporal profiles labeled as spatially
non-integrated components Anc and spatially integrated com-
ponents Aic. The components from Anc correspond to the
subspace pertaining to underlying sources including resting
state activities, low frequency drifts and other interfering nui-
sance components. On the other hand, Aic contains tempo-
ral mixtures of underlying sources, which fall under the cate-

gory of signal integration [20] and within these components
task related hemodynamics are mixed with other signal vari-
ations such as drifts. Our goal is to somehow detect the non-
integrated dictionary atom ad that consists solely of drift, so
that it can used to detrend the entire data-set. Once it is sep-
arated from Anc ∈ RN×l, we are left with A∗nc ∈ RN×l−1.
In order to identify the dictionary atom that consists of a low
frequency drift, consider the following model

Xd = AdΨd + E
= AncΨnc + AicΨic + E
= adzd + A∗ncΨ

∗
nc + AicΨic + E

= adzd + AΦ+ E
= adzd + X

(4)

Algorithm 2: Learning and identifying drift atom, de-
trending fMRI data-set and inferences
Given: Xd ∈ RN×v , k, and ac
1. Estimate Ad and Ψd from (4) using SDL,
2. Perform correlation analysis between ac and Ad to

identify the drift ad among dictionary atoms, σ and
γ signifies standard deviations and correlation val-
ues, respectively, γ = max

∣∣∣ aᵀc Ad

σacσAd

∣∣∣
3. From (6) find zl and use (7) to obtain X,
4. Run the second pass of SDL using model (1),
5. Use F-test for inferences, where Asi is a local dic-

tionary, P⊥Asi
is the projection matrix associated

with the subspace of Asi , Asi\z is a reduced size
design matrix of a local dictionary, M is the rank
of A, and {si}vi=1 captures the indices of k most
correlated dictionary atoms with the data X [10],

Fi =
xᵀi (P

⊥
Asi\z
− P⊥Asi

)xi
xᵀi P⊥Asi

xi
(N −M). (5)

where zd ∈ Rv is the corresponding sparse strength of
drift atom, A = A∗nc + Aic, Φ = Ψ∗nc + Ψic and X =
AΦ+E. The model in (4) can be solved using minφi

||xdi −
Aψdi ||

2
2, subject to||xi||o ≤ k. Finding the optimal k

corresponds to a problem of model selection criterion that
can be resolved using a univariate model selection criterion
[21, 22, 23, 24]. We considered a K-SVD algorithm to ad-
dress the model (4) to learn drift subspace ad and remaining
signal subspace A∗nc and Aic. The detection of drift atom in
Ad is not a straight forward procedure, because unlike ex-
ploratory data-driven techniques that arrange the transformed
components according to some criteria for instance PCA or-
ders them by energy and CCA by autocorrelation, dictionary
atoms are not arranged by any specific order. Therefore,
DCT basis along with a CCA based drift estimator are de-
ployed simultaneously to allow an unsupervised execution
of the scheme. As CCA orders its components according
to maximum autocorrelation, therefore drift will always be
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the first component. However, when a blocked experimen-
tal design is employed we may get into a risk of estimating
BOLD response as first component due to more probability
of its higher autocorrelation. This problem was addressed
by using linear regression analysis between DCT basis and
CCA, which provides the exact location of drift among CCA
components. Using DCT basis directly to identify drift atom
is not advisable because Ad contains drift not only as an inde-
pendent atom ad, but it may also be linearly mixed into other
sources contained in sub-dictionary Aic. Furthermore, only
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Fig. 1. a) Sources, b) Retrieved sources by SDL.

retaining the subspace ad requires re-estimation of its corre-
sponding signal strength zd. Alternatively, signal strength zl
is estimated using least squares.

min
z
||adzl − xdi ||22 (6)

If Xc are the components obtained by CCA technique using
Xc = Xpu and At are the drift estimates obtained at each
voxel using (2) then (3) allows us to estimate strength of rela-
tionship Ω between xcj and ati , where j=1,2,...J, i=1,2,...v,
J being the total number of CCA components. The auto-
covariance matrix of Ω provides a quantifiable measure that
can be used to locate the drift ac among CCA components.
The full procedure for second step of the scheme is described
in Algorithm 1. Due to the curse of dimensionality, the num-
ber of voxels being much greater than the number of obser-
vations, PCA has been used to prewhiten the data by keeping
only few components with highest variance.

In the third step, temporal correlation analysis between
drift component of CCA ac and dictionary atoms Ad allows
the detection of atom that contains drift. The dictionary atom
in Ad that maximally correlates with ac is considered as the
drift atom ad. It is used to remove trends from the data using
least square projection given as

X = Xd − adzl (7)

where X ∈ RN×v is the detrended fMRI data, which is con-
sidered for sparse GLM modeling to perform statistical infer-
ences such as activation detection. The details about third and
fourth step of the proposed scheme followed by an F-test for
statistical inferences are given in Algorithm 2.

3. APPLICATION

3.0.1. Simulation Study

The simulation study allowed us to examine and compare the
strength of DCT, exploratory and SDL techniques for drift es-
timation in presence of spatiotemporal dependencies. Three
waveforms each consisting of 220 time-points were assigned
to three different slices according to activation patterns S1−
S3. The patterns S1−S3 consisted of patches 11×11 pixels

(a) (b)

(c) (d)

(e) (f)
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Fig. 2. Retrieved sources S1 − S2 by SDL (when applied
to six different detrended data-sets) and estimated drifts by a)
DCT, b) PCA, c) CCA, d) sICA, e) tICA, f) proposed shown
in top two rows and bottom row of each subfigure, respec-
tively. The drift for DCT is obtained by taking SVD of drift
estimates.

with an activation of amplitude 1 from pixel 3−8 for S1, 4−9
for S2 and 2−11 for S3 along both dimensions, respectively,
as shown in Fig 1a. According to activation sources, the
source waveforms along with random white gaussian noise
N (0, 0.3) were added together to generate a mixture of time-
series called the generated data-set. The waveform S3 is mod-
eled as drift and generated using long memory noise.

The first step consisted of source estimation using SDL
whose results are shown in Fig. 1b. The drift source S3
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Fig. 3. Activation maps for block design RFT task at a p-value
threshold of 0.0001 using sGLM framework for detrended
data-set by (A) DCT, (B) CCA, and (c) proposed.

due to its non-sparseness could not be decorrelated from other
sources by SDL. However, it was correctly estimated and used
to detrend the generated data-set. In the second step drift was
retrieved using DCT, PCA, CCA, sICA, and tICA followed
by detrending of generated data-set using their correspond-
ing retrieved drifts. In the third step SDL was reapplied on
all detrended data-sets. The results from third step consisted
of retrieved activation patterns and their corresponding wave-
forms S1 and S2, which are illustrated in Fig. 2. For all tech-
niques, the accuracy of extracted sources S1 and S2 by SDL
demonstrates how precisely each technique was able to esti-
mate S3. The spatiotemporal preciseness of retrieved sources
by SDL showed its superior drift estimation capability over
other multivariate techniques.

3.0.2. Real fMRI data

The K-SVD algorithm was chosen for dictionary learning due
to its superior performance, and thresholding correlation [25]
was used for sparse coding due to its computational simplic-
ity. For an unbiased comparison, fixed number of iterations
were used for the convergence of K-SVD. The real data-sets
consisted of A) block-related right finger tapping (RFT) task
dataset: TR = 3 sec, with a total acquisition time of 480
sec, and B) event-related RFT task dataset: TR = 2 sec,
with a total acquisition time of 650 sec. The acquisition de-
tails about these data-sets can be found in [10]. The image
pre-processing for real fMRI data was carried out in Matlab
that consisted of five steps, i) realignment, ii) normalization,
iii) spatial smoothing, iv) masking, and v) temporal smooth-
ing. All functional images were realigned to the first image
in order to correct for any head movements that may have
occurred during the course of the experiment. In the next
step, all images were spatially normalized to a standard Taila-
rach template, resampled to 2mm × 2mm × 2mm voxels
and spatially smoothed using a 8mm × 8mm × 8mm full-
width at half-maximum (FWHM) Gaussian kernel. To re-
move any data outside the scalp images were masked and only
those voxels were kept which exceeded a masking threshold.

Fig. 4. Activation maps for event design RFT task at a p-value
threshold of 0.0001 using sGLM framework for detrended
data-set by (A) DCT, (B) CCA, and (c) proposed.

The 4-dimensional data-sets collected from the masked im-
ages were re-arranged as 3-dimensional matrices, and stored
in Xd ∈ RN×v×S to be used as a whole brain’s measured
data arranged according to the slice numbers s = 1, 2, ..S.
The autocorrelations in the data due to high frequencies were
removed by temporal smoothing, where 1.5 s FWHM Gaus-
sian filter was used. The data-sets from each slice were then
used for slice based analysis. Considering an unbiased com-
parison for SDL, a total of 30 dictionary atoms were trained,
using 30 number of iterations for each slice. For exploratory
techniques such as CCA first 30 components from PCA were
used.

The detrending by DCT, CCA, and proposed was fol-
lowed by SDL. For SDL, according to AIC criteria sparsity
parameter k for block and event design was set to 2, and
4, respectively. For activation detection, the most corre-
lated atom with the modeled BOLD hemodynamic response
(MHR) along with other non-zero k−1 dictionary atoms were
chosen as regressors for sparse GLM. The MHR is obtained
by convolving a canonical HRF with a stimulus function.
The results illustrated in Fig. 3 and 4 reveal that the neural
activations in motor area for RFT are truly identified for all
techniques with few exceptions. The results of activation de-
tection based on proposed detrending showed more specific
activation maps without false activations.

A
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Fig. 5. Estimated drifts for block design RFT task using (A)
DCT, (B) CCA, and (c) proposed. The drift for DCT is ob-
tained by taking SVD of drift estimates at relevant pixels.
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